RFXpress RFX100 Advanced RF/IF/IQ Waveform Creation and Editing Software for the AWG5000 & AWG7000 Series Generators Printed Help Document

Copyright © Tektronix. All rights reserved. Licensed software products are owned by Tektronix or its subsidiaries or suppliers, and are protected by national copyright laws and international treaty provisions.

Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specifications and price change privileges reserved.

TEKTRONIX and TEK are registered trademarks of Tektronix, Inc.

Tektronix is pleased to acknowledge Mr Joan Mercade as the author of portions of this Tektronix RFXpress Software providing baseband and modulation functionality.

SourceGrid LICENSE, Copyright (c) 2006 www.devage.com, David Icardi

RFXpress RFX100 Online Help Version 1.1, part number 076-0081-01.

Contacting Tektronix

Tektronix, Inc. 14200 SW Karl Braun Drive P.O. Box 500 Beaverton, OR 97077 USA

For product information, sales, service, and technical support:

- **I** In North America, call 1-800-833-9200.
- Worldwide, visit www.tektronix.com to find contacts in your area.

Table of Contents

Intro	duction	
	Welcome]
	Related Documentation	1
	Conventions	2
	Feedback.	2
Getti	ng Started	
	Minimum System Requirements	3
	Ordering RFXpress	3
	Installation	4
	Connection Setups	
	Setup for RF Signal Generation	4
	Setup for IF Signal Generation	4
	Setup for AWG IQ Signal Generation	4
Oper	ating Basics	
	About Basic Operations	-
	Overview of the Software	
	Starting the Software	
	Using the Software to Create a Signal.	10
	Exiting the Software.	
	File Name Extensions and Directories	11
	Applications, Setup Files, and Data Files	12
	Menus and Toolbars	
	Menu Bar	12
	Standard Toolbar	16
	Status Bar	17
	Waveform List	17
	Toolbar Options	
	Select Application	20
	Signal Type	20
	Compile	20
	On/Off.	21
	Run	21
	Dialog Boxes	
	Open Setup	21
	Open Data	21
	Save Setup	21

	Import Data from a File
	Import from Tektronix Oscilloscope.
	Find Instruments
	Graph
	Compile Settings.
	Option Installation
	Overview
Ge	neric Signal Dialog Boxes
	PRBS Editor
	Data Source Values
	Modulation File1(Samples)
	Modulation File2(Symbols)
	Symbol Map
UV	VB-WiMedia Dialog Boxes
	Calibration
	Marker Mapping
	Tone Nulling.
	Hopping Pattern
	Process Preferences.
	Custom Settings.
	Custom Settings
	Frame Payload
tinç Set	Frame Payload J a Generic Signal
_	Frame Payload J a Generic Signal up
_	Frame Payload J a Generic Signal up Single Carrier.
_	Frame Payload J a Generic Signal up Single Carrier. Multi Carriers
_	Frame Payload J a Generic Signal up Single Carrier. Multi Carriers Editing Carrier Details
_	Frame Payload J a Generic Signal up Single Carrier. Multi Carriers Editing Carrier Details Selecting the Base Data
_	Frame Payload J a Generic Signal up Single Carrier. Multi Carriers Editing Carrier Details Selecting the Base Data Modulation for Carriers
Set	Frame Payload J a Generic Signal up Single Carrier. Multi Carriers Editing Carrier Details Selecting the Base Data Modulation for Carriers
Set	Frame Payload J a Generic Signal up Single Carrier. Multi Carriers Editing Carrier Details Selecting the Base Data Modulation for Carriers Filter for Carriers wer Ramping
Pov	Frame Payload J a Generic Signal up Single Carrier. Multi Carriers Editing Carrier Details Selecting the Base Data Modulation for Carriers Filter for Carriers wer Ramping Power Ramping Parameters
Set	Frame Payload Ja Generic Signal up Single Carrier Multi Carriers Editing Carrier Details Selecting the Base Data Modulation for Carriers Filter for Carriers wer Ramping Power Ramping Parameters Impairments
Pov	Frame Payload Ja Generic Signal up Single Carrier. Multi Carriers Editing Carrier Details Selecting the Base Data Modulation for Carriers Filter for Carriers wer Ramping Power Ramping Parameters Impairments Carrier Leakage for Single Carrier
Pov	Frame Payload Ja Generic Signal up Single Carrier. Multi Carriers Editing Carrier Details Selecting the Base Data Modulation for Carriers Filter for Carriers wer Ramping Power Ramping Parameters Impairments Carrier Leakage for Single Carrier Quadrature Error for Carriers.
Pov	Frame Payload Ja Generic Signal up Single Carrier. Multi Carriers Editing Carrier Details Selecting the Base Data Modulation for Carriers Filter for Carriers wer Ramping Power Ramping Parameters Impairments Carrier Leakage for Single Carrier Quadrature Error for Carriers. I/Q Imbalance for Carriers
Set	Frame Payload J a Generic Signal up Single Carrier. Multi Carriers Editing Carrier Details Selecting the Base Data Modulation for Carriers Filter for Carriers wer Ramping Power Ramping Parameters
Pov I/Q	Frame Payload Ja Generic Signal up Single Carrier. Multi Carriers Editing Carrier Details Selecting the Base Data Modulation for Carriers Filter for Carriers wer Ramping Power Ramping Parameters Impairments Carrier Leakage for Single Carrier. Quadrature Error for Carriers Non-Linear Distortions for Carriers

	MultiPath	
	Multipath Parameters for Carriers	65
	Interference Addition	
	Signal Addition for Carriers	66
	Offset for Carriers	67
	Sinusoidal for Carriers	68
Creat	ting a UWB-WiMedia Signal	
	Conformance Mode	68
	Custom Mode	69
	Conformance Mode Setup	
	Packet Group Details for Conformance Mode	70
	Packet Details for Conformance Mode	72
	Hopping Details for Conformance Mode	73
	Custom Mode Setup	
	Packet Group Details for Custom Mode	74
	Setting PPDU Details	76
	PLCP Preamble	77
	PLCP Header	78
	PSDU	79
	Packet Sync Sequence	79
	PHY Header	83
	MAC Header	84
	I/Q Impairments	
	Carrier Leakage for UWB-WiMedia	85
	Quadrature Error for UWB-WiMedia	85
	I/Q Imbalance for UWB-WiMedia.	86
	Non-Linear Distortion for UWB-WiMedia	87
	Hardware Skew for UWB-WiMedia.	88
	Distortion Addition	
	Amplifier for UWB-WiMedia	88
	MultiPath	
	Multipath Parameters for UWB-WiMedia	89
	Interference Addition	
	Signal Addition for UWB-WiMedia	90
	Offset for UWB-WiMedia	91
	Gated Noise for UWB-WiMedia	92
	Sinusoidal for UWB-WiMedia	94
	Real-World Signal Interference	95

Calibration for UWB-WiMedia Signals	
Using Calibration for IF/RF Signals.	96
Instrument Control	
Controlling an Instrument	97
Controlling an Arbitrary Waveform Generator (AWG)	
Connecting to and Controlling an Oscilloscope.	100
Connecting to and Controlling a Performance Signal Generator (PSG)	101
Graphing	
Zooming Graphs	104
Pulse Shape	104
I(t), Q(t)	105
CCDF Plot	106
Spectrum	107
Constellation Plotting	108
Eye Diagram	109
Reference	
Error Messages	
Error Messages for Generic Signal	109
Error Messages for UWB-WiMedia	111
Miscellaneous Error Messages	113
Miscellaneous Error Messages 2	114
Shortcut Keys	115
RFXpress Options and AWG Models	115
AWG Specifications	116
Interleave	116
PRBS Editor Starting Values	119
Amplifier Distortions	119
Nonlinear Impairments.	120

Index

Introduction Welcome

Welcome

RFXpress RFX100 is a software application that creates digitally modulated baseband, IQ, IF, RF, and UWB-WiMedia signals that can be generated through arbitrary waveform generators (AWG). This software runs as an integral part of AWG5000 and AWG7000 series arbitrary waveform generators and can also run from an external PC.

Using RFXpress RFX100 (referred to as RFXpress), you can define baseband I and Q signals with various modulation schemes and create single or multi-carrier signals where each carrier can be independently defined. For each carrier, you can apply impairments such as quadrature error and I/Q imbalance, add interferences such as sinusoidal interference, and define the graphs to create. Upon compilation, the signal can be viewed as graphs, sent to an arbitrary waveform generator, and saved for later use. Compilation options include sending signals directly to the AWG and completely eliminating the wrap-around effects found in arbitrary waveform generators. This provides seamless signals that can be played back continuously without any discontinuity or glitch in the time, frequency, modulation, or channel coding domains. Waveform transfer and control of the AWG5000 and AWG7000 series can be performed directly from RFXpress.

Waveforms captured from oscilloscopes and real-time spectrum analyzers can be modified in RFXpress before they are regenerated.

You can create UltraWideBand WiMedia signals in the Conformance and Custom modes. In the conformance mode, you can either select a standard setup or define your own setup based on the UWB standards. In the Custom mode, you can create a customized signal by defining packet parameters and setting processing preferences. The Calibration feature for the UWB-WiMedia module allows you to create correction files and apply these correction files to channels during compilation.

Related Documentation

In addition to this RFXpress Online Help, the following documentation is included with the software:

- *RFXpress Installation Manual* (Tektronix part number 071-2166-XX). The installation manual has information about installing and upgrading the software.
- *RFXpress User Manual* (Tektronix part number 077-0045-XX). The user manual is adapted from the online help and is available in PDF format.
- *RFXpress Quick Start User Manual* (Tektronix part number 071-2167-XX). The quick start user manual has information about using the software creating IF/IQ/RF signal output.

For WiMedia standards, please refer to the *MultiBand OFDM Physical Layer Specification Version 1.2* (*Draft*) by WiMedia Alliance.

Introduction Conventions

Conventions

The online help uses the following conventions:

■ When steps require a sequence of selections using the software interface, the ">" delimiter marks each transition between a menu and an option. For example, File > Save.

- DUT refers to the Device Under Test
- Three dots (...) following a menu item indicates that the menu item will open a submenu.
- The terms "signal" and "waveform" are used interchangeably.

Feedback

Tektronix, Inc.

14200 SW Karl Braun Drive

P.O. Box 500

Beaverton, OR 97077

USA

For product information, sales, service, and technical support:

- In North America, call 1-800-833-9200.
- Worldwide, visit www.tektronix.com to find contacts in your area.

Minimum System Requirements

The minimum requirements for the offline version of the application are listed in the following table.

Table 1: Minimum system requirements

OS Supported	Minimum Requirements	
Windows XP Professional	2.0 GHz or higher	
Service Pack 2.1	512 MB RAM	
	2 GB free disk space	
	Microsoft Internet Explorer 6.01 or higher	
	.NET 2.0 runtime	
	1024 x 768 display resolution with 120 dpi font size	

You will need TekVisa version 3.0.2 Build 33 or above to send data to a Tektronix arbitrary waveform generator. If TekVisa is not already installed in your PC, you can download the software from www.tektronix.com/software.

Ordering RFXpress

RFXpress can be ordered as follows:

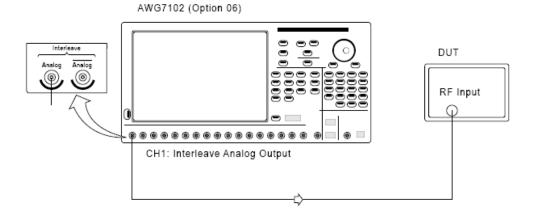
Table 2: Ordering RFXpress

Part number	Description	
RFX100	Base Software: RFXpress for General Purpose IQ, IF, and RF signal creation	
Opt. UWBCF	RFXpress plug-In for UWB-WiMedia IQ, IF, and RF conformance signal creation (requires RFX100 as prerequisite)	
Opt. UWBCT	RFXpress plug-in for UWB-WiMedia IQ, IF, and RF custom and conformance signal creation (requires RFX100 as prerequisite and includes Option UWBCF)	

Getting Started Installation

Installation

An installation wizard installs RFXpress. If you have not installed TekVisa ver 3.0.2 Build 33 and .NET 2.0, you will be notified during installation. You can cancel the installation any time during the process.


For details on how to install the software, refer to the *RFXpress Installation Manual* (Tektronix part number 071-2166-xx) available as a PDF on the CD-ROM.

You can uninstall RFXpress in either of the two ways:

- From Start > Programs > Tektronix RFXpress > RFXpress Uninstallation
- From Add/Remove programs in Control panel.

Setup for RF Signal Generation

- 1. Start the RFXpress installed on the AWG.
- **2.** From the toolbar, select the signal type as IF/RF.
- **3.** Make connections as shown in the figure:
 - Connect the AWG Ch 1 Analog Output to the DUT where the RF Signal must be fed.
 - When using the Interleave mode, the RF output should be taken from Interleave Output as shown.

- **4.** Click Compile. The waveform is compiled according to the default settings in the Compile Settings window. The compiled waveform is displayed in the Waveform List. This IF/RF waveform will be transferred to the AWG channel (Ch1) and this can also be seen in the Instrument Control > AWG tab.
- 5. Click On/Off to turn on the channel Ch1.
- **6.** Click Run to generate the signal on the AWG.

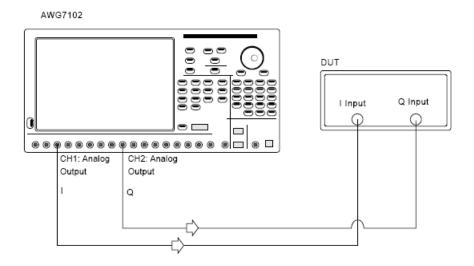
See also:

Calibration

Find Instruments

Setup for IF Signal Generation

- 1. Start the RFXpress installed on the AWG.
- **2.** From the toolbar, select the signal type as IF/RF.
- 3. Connect the AWG Ch 1 Analog Output to the DUT where the IF Signal must be fed.
- **4.** Click Compile. The waveform is compiled according to the default settings in the Compile Settings window. The compiled waveform is displayed in the Waveform List. This IF waveform will be transferred to the AWG channels (Ch1) and this can also be seen in the Instrument Control > AWG tab.
- 5. Click On/Off to turn on the channel Ch1.
- **6.** Click Run to generate the signal on the AWG.

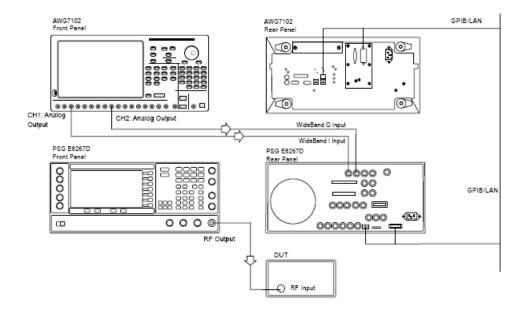

See also:

Calibration

Find Instruments

Setup for AWG IQ Signal Generation

- **1.** Start the RFXpress installed on the AWG.
- **2.** From the toolbar, select the signal type as IQ.
- **3.** Make connections as shown in the figure:
 - Connect the AWG Ch1 Analog Output to the DUT where the I Signal must be fed.
 - Connect the AWG Ch2 Analog Output to the DUT where the Q Signal must be fed.



NOTE. Both cables must be the same length, otherwise you would need to deskew them.

- **4.** Click Compile. The waveform is compiled according to the default settings in the Compile Settings. The compiled waveform is displayed in the Waveform List. This waveform will be transferred to the AWG channels (Ch1 and Ch2). This can also be seen in the Instrument Control > AWG tab.
- 5. Click On/Off to turn on the channels Ch1 and Ch2.
- **6.** Click Run to generate the signal on the AWG.

Setup for AWG IQ Signal Generation with External Modulator

- **1.** Start the RFXpress installed on the AWG.
- 2. Select the Signal type as IQ.
- **3.** Make connections as shown in the figure:
 - Connect the AWG and Agilent performance signal generator® (E8267D with Option 015) through LAN or GPIB.
 - Connect the AWG Ch1 Analog Output to the Agilent performance signal generator's (PSG®) external I Input (in the rear panel).
 - Connect the AWG Ch2 Analog Output to the Agilent performance signal generator's (PSG®) external Q Input (in the rear panel).
 - Connect the PSG's RF output from the front to the DUT.

NOTE. Both cables must be the same length, otherwise you would need to deskew them.

- **4.** Click Compile. The waveform is compiled according to the default settings in the Compile Settings window. The compiled waveform is displayed in the Waveform List. This waveform will be transferred to the AWG channels (Ch1 and Ch2). This can also be seen in the Instrument Control > AWG tab.
- 5. Click On/Off to turn on the channels Ch1 and Ch2.
- **6.** Click Run to generate the signal on the AWG.

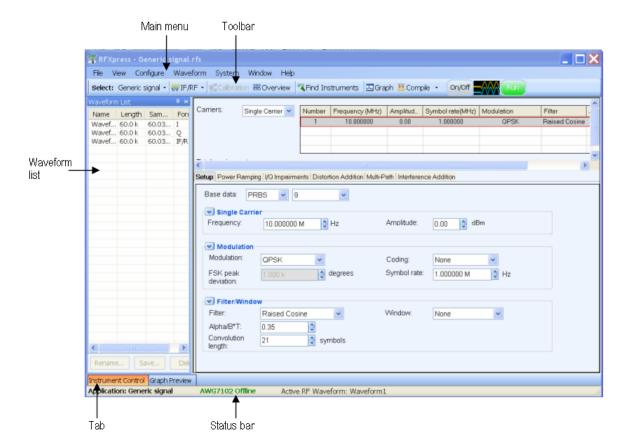
See also:

Calibration

Find Instruments

About Basic Operations

The basic operations section describes the software, tells how to start the software, use the menus and toolbars, and describes the dialog boxes.


In this online help, all menu selections are indicated with Menu name and Menu options separated by ">". You can access a command or a menu option in more than one way. Several main menu options are available in a toolbar that you can use instead of selecting the option from the main menu. Shortcut menus, which open with a right-click, are provided for editing, creating and viewing graphs, importing data from a file or a Tektronix oscilloscope, and transferring a waveform to an arbitrary waveform generator.

Some dialog boxes also have a Help button that displays help for that dialog box.

Operating Basics Overview of the Software

Detailed operations and parameters are described in the sections on Generic Signal, UWB-WiMedia, Calibration for WiMedia Signals, Instrument Control, and Graphing. The References section lists Error Messages, Shortcut Keys, and provides a note on Interleaving.

The following figure shows the application screen, the menu, the toolbar, and other elements of the user interface.

Overview of the Software

RFXpress is a software application that creates digitally modulated baseband, IQ, IF, RF, and UWB-WiMedia signals that can be generated through arbitrary waveform generators (AWG). This software runs as an integral part of AWG5000 and AWG7000 series arbitrary waveform generators and can also run from an external PC.

Features of RFXpress

■ Baseband data generation: Define baseband I and Q signals using a variety of modulation schemes such as, BPSK, QPSK, PI/4 QPSK, OQPSK, 8-PSK, O-8PSK, QAM16, QAM32, QAM64, QAM128,

Operating Basics Overview of the Software

QAM256, QAM512, QAM1024, GMSK, 2-FSK, 4-FSK, 8 -FSK, 16-FSK, 32-FSK, AM, FM, and PM.

■ Multi-carrier setup: Define multiple RF/IF carriers in a single waveform. Each carrier can be independently defined with parameters such as carrier frequency, symbol rate, modulation type, and baseband filters.

- IQ impairments: Apply impairments including quadrature error and quadrature imbalance.
- Generate the following graphs:

- Frequency Domain: Spectrum

I v Q: Constellation

Time Domain: I(t) and Q(t)

Statistical: CCDF

- Distortion measurement for system calibration: To maintain system integrity and coherency with Amplitude, Phase inband flatness, and skew between separate channels. The setup includes capturing data from a TDS oscilloscope and a real-time spectrum analyzer and downloading the data to generate the correction data.
- Noise/interference generation and addition: Generate and add interference for waveforms. Generate gated noise on specific frames designated by the user.
- **Capture and Replay:** Waveforms captured from oscilloscopes and real-time spectrum analyzers can be modified in RFXpress before they are regenerated.
- Wrap around: RFXpress completely eliminates all the wrap-around effects found in arbitrary waveform generators, providing seamless signals that can be played back continuously without any discontinuity or glitch in the time, frequency, modulation, or channel coding domains.
- Connectivity between AWG, oscilloscope, and Agilent Performance Signal Generator® (PSG). The ability to identify and connect to a Tektronix Arbitrary Signal Generator (AWG), a Tektronix oscilloscope, and the Agilent PSG®, and to configure their setups remotely.

Operating Basics Starting the Software

Starting the Software

From the Start menu, click All Programs > Tektronix RFXpress > RFXpress. You can also double-click the RFXpress shortcut on the desktop.

You can use the software in three modes:

- RFXpress on any AWG5000 or AWG7000 series instrument. In this case, the software automatically detects the AWG software. You can transfer data directly to the AWG. The status bar shows "AWGXXXX Online"
- RFXpress on a PC with the AWG software running in the offline mode. In this case, the AWG software has to started before starting RFXpress. You can transfer data to the AWG offline software. The status bar shows "AWGXXXX Offline".

NOTE. If RFXpress does not detect the offline version of the AWG software, the following message appears: AWGMemorymgr.exe is not found.

■ RFXpress on a PC without the AWG software. In this case, the software does not detect the AWG software, and you cannot transfer data to the AWG (although you can create and store the waveform for later use). The status bar shows "AWGXXXX Not Available".

Using the Software to Create a Signal

Using RFXpress, you can generate a signal as follows:

- 1. Select an application or module: Generic Signal or UWB-WiMedia.
- 2. Select the signal type: IF/RF or IQ.
- **3.** For a Generic signal, select the number of carriers: Single or Multi-carrier. For a UWB signal, select the mode: Conformance or Custom.
- **4.** For a Generic signal, define the carrier parameters: Frequency, Modulation, Amplitude, Filter and others. For a UWB signal, select the setup and define the selected packet group and packet parameters.
- **5.** Select the compilation options and compile the signal.

You can also specify the graphs that you want to create and view them in the Graph Preview window. You can transfer the signal to an arbitrary waveform generator in the Instrument Control window. Importing files and replicating waveform files work with only the following instruments:

- Oscilloscopes: Tektronix TDS6000, DPO70000, and DPO7000 series
- Arbitrary Waveform Generators: Tektronix AWG400, AWG500, AWG600, and AWG700 series
- Real-time Spectrum Analyzers: Tektronix RSA3000 and RSA60000 series

Operating Basics Exiting the Software

Exiting the Software

Select File > Exit to exit the application. If you have not saved the waveforms, you are prompted to do so.

File Name Extensions and Directories

The software uses the following file name extensions:

Table 3: File name extensions and their descriptions

File name extension	Description	
.rfs	Setup file of the selected application	
.rfd	Data file of the waveform (generic signal and ultra wide band signal)	
.smp	Symbol file	

The software uses the following directories:

Table 4: Directory names and their descriptions

Directory	Description
C:\Program Files\Tektronix\RFXpress\System	Contains the application files and executables
C:\Program Files\Tektronix\RFXpress\Documentation	Contains the related documentation as text and PDF files
C:\Program Files\Tektronix\RFXpress\Samples	Contains sample waveform files

Applications, Setup Files, and Data Files

An application is a module that you can use to create specific types of waveforms, for example Generic Signal and UWB-WiMedia. Applications that are available but have not been purchased appear in the Application list but are disabled.

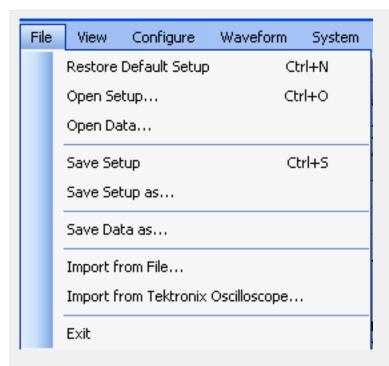
You can only have one Setup File (.rfs) open at a time and only one application in use at a time. If you change the application, you will be prompted to save the open file.

Selecting an application: In the Select field, select an application from the list. When you select an application (Generic Signal or UWB-WiMedia), the default settings are displayed for the currently selected application.

Setup File (.rfs): A Setup File is a collection of settings that describes a single waveform. Once you compile the setup file (using Waveform > Compile), you can save the file as a Data File (.rfd). Compiled data files for the current session appear in the Waveform List. After you select the Application, a default Setup File opens automatically. If a setup file is open with unsaved changes and you try to create a new file or change applications, you are prompted to save the file. To open an existing setup file, select File > Open Setup.

The rfs file content varies depending on the selected application (Generic or UWB-WiMedia). By default, the name of the rfs file is derived from the application name.

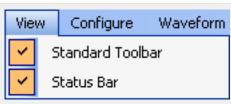
Data File (.rfd): You can save a compiled Setup File as a Data File using File > Save Data or Save Data As. Files that you import from other instruments become data files. Select File > Save or Save As to save these data files. To open an existing data file, select File > Open Data.


NOTE. Each rfd file can store one of the three formats: IF/RF, I and Q. An rfd file stores the version information and sampling rate.

Menu Bar

The RFXpress menu has the following items:

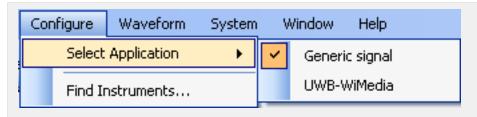
■ File


Operating Basics Menu Bar

Use the File menu to:

- Restore the default setup for the currently active application
- Create new waveform setups
- Open, close and save waveform setups (.rfs format)
- Open, close and save data files (.rfd format)
- Import data from a file (created by another software)
- Import data from a Tektronix oscilloscope
- Exit the software

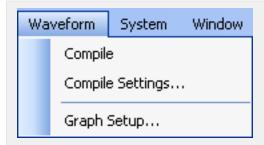
View



Use the View menu to:

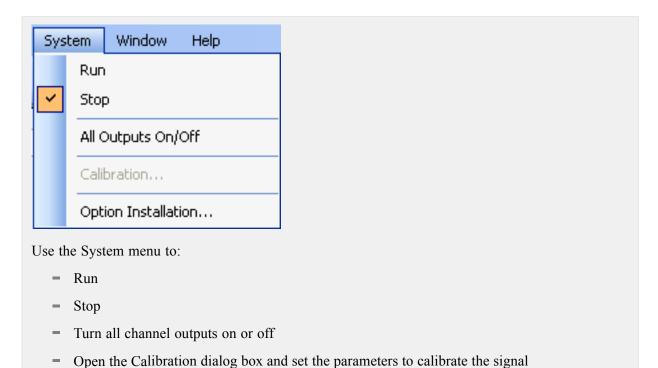
- View the Standard toolbar
- View the Status toolbar

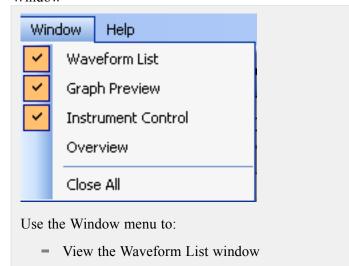
Configure


Operating Basics Menu Bar

Use the Configure menu to:

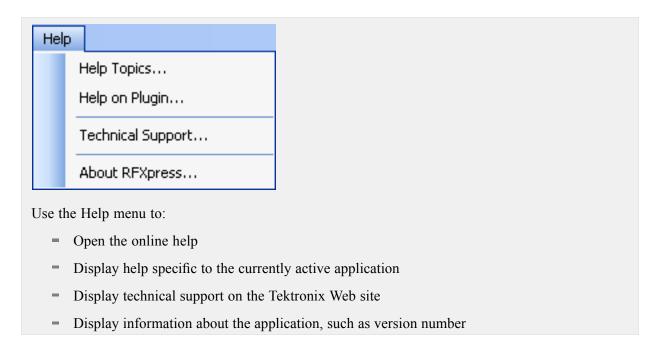
- Select an application: Generic Signal or UWB-WiMedia (if this option has been purchased)
- Open the Find Instruments dialog box to make instrument connections


■ Waveform


Use the Waveform menu to:

- Compile the currently active Waveform Setup
- Set Compilation options
- Open the Graph Setup dialog box to select the graphs
- System

Operating Basics Menu Bar



■ Window

- Preview the Graphs
- Open Instrument Control window
- Open the Overview window
- Close all windows
- Help

Operating Basics Standard Toolbar

Standard Toolbar

The Standard toolbar is always displayed by default. Select View > Standard toolbar to hide or show the toolbar.

The Standard toolbar has the following options that you can select:

- Select Application
- Signal type
- Calibration
- Overview
- **■** Find Instruments
- Graph
- Compile and Compile Settings

Operating Basics Status Bar

Status Bar

The Status Bar is always displayed by default. Select View > Status Bar to hide or show the status bar. The status bar shows the selected application, the AWG mode, and the active waveform names. For UWB-WiMedia signals, the status of calibration (On/Off) is also displayed.

Application: UWB-WiMedia AWG7102 Online Calibration corrections: On Active RF Waveform: Waveform1

Waveform List

Window > Waveform List

The Waveform List is a floating window and can be moved anywhere in the display area. By default it opens in the leftmost area of the display window. The Waveform List window can be kept open by pushing the pin in the top right corner, or closed and opened as you like. To view the waveform list, from the menu select Window > Waveform List.

After you select a signal to generate and set the parameters for it, you must compile it to create the data. Once you compile a signal (using Compile from the toolbar), waveform data is created and added to the waveform list. The Waveform list displays the Name, Length, Sampling Rate and Format of the waveform data. The maximum number of waveforms that can be displayed in the waveform list is 100. When the number of waveforms exceeds this limit, a warning message appears: Number of waveforms is over the maximum limit of 100.

To save a waveform that is available in the list, select the waveform and select File > Save Data or Save Data As. You can also right-click the selected waveform and choose Save Data As. The compiled waveform or data file is saved as a data file (.rfd) in the specified location. The data files are stored in the path where the application is installed.

NOTE. If you close the software without saving the compiled waveform, the waveform is lost. You can compile the waveform again from the setup, if you have saved the setup using File > Save Setup or Save Setup As. The setup file is an rfs file.

You can select the following options from the shortcut menu:

Operating Basics Waveform List

Table 5: Shortcut menu options and their description

Description	
Enabled only if the AWG software is running and when a waveform is selected. Sends the selected waveform data to an Arbitrary Waveform Generator. Select the channel to which to send the data.	
Enabled only when a waveform is selected. Plots a graph of the selected type: Frequency Spectrum, Time Domain and CCDF. You can also select <u>Graph Settings</u> and choose the graphs from those available.	
Enabled only when a waveform is selected. Saves the selected waveform data as a .rfd file in the specified name and location.	
Imports data into the software from a file. Choose the file and location from which to import data.	
Imports data from a Tektronix oscilloscope that is connected to the instrument on which the software is running.	
Enabled only when a waveform or waveforms are available in the Waveform List. Deletes all the waveforms shown in the waveform list.	
Enabled only when a waveform is selected. Deletes the selected waveform.	
Enabled only when a waveform is selected. Opens a dialog box that allows you to enter a waveform name.	

You can also drag and drop a waveform from the Waveform List to Instrument Control. When you drag and drop a waveform, the sampling rate is automatically set in the instrument.

The Rename..., Save As... and Delete buttons appear at the bottom of the Waveform List. These buttons are available only when a waveform is selected.

Operating Basics Waveform List

Table 6: Waveform list buttons and their description

Selection	Description
Rename	Opens a dialog box and allows you to rename the selected waveform.
Save	Saves the selected waveform as an .rfd file.
Delete Deletes the selected waveform.	

Generating Graphs

In the shortcut menu, from the Graph option you can select the following graphs: Time Domain, Spectrum, and CCDF. Not all the graphs are available for all waveform formats. The following table lists the availability of the graphs for various waveform formats.

Table 7: Waveform formats and available graphs

Selected waveform	Graphs		
format	CCDF	Spectrum	Time Domain
When both I and Q waveforms are selected	Available	Available	Not available
When I waveform is selected	Not available	Not available	Available
When Q waveform is selected	Not available	Not available	Available
When IF/RF waveform is selected	Not available	Available	Available

Operating Basics Select Application

Select Application

Configure > Select Application

Before you create a new Waveform Setup and Setup File, you must identify the application. Do this by clicking on the Application field and selecting either Generic Signal or UWB-WiMedia. The default settings for the currently selected application will be displayed.

NOTE. UWB-WiMedia is enabled only if you have purchased the option.

Signal Type

Set the signal type from the drop-down list to either IF/RF or IQ. Another way to select the signal type is by using the <u>Compile Settings</u> dialog box.

Compile

Waveform > Compile

To compile a currently active waveform:

1. Click Compile in the Standard toolbar. The waveform is compiled and displayed in the Waveform List.

2. From the Waveform List, you can select Send to AWG, Show Graph, Save Data as, Delete, or Rename the waveform.

Operating Basics On/Off

On/Off

Click the On/Off button to turn on or turn off the arbitrary waveform generator (AWG) channel output.

Run

Click the Run button to turn on or turn off the Run state of the arbitrary waveform generator (AWG). If the application is running on an AWG or using an offline mode of the AWG software, the compiled waveform is directly output to the channel. The channel is turned on and generates the signal. The signal generation is indicated when the Run button changes to green.

Open Setup

File > Open Setup

You can open a setup file from the selected location. All files have the file name extension .rfs.

Open Data

File > Open Data

You can open a data file from the selected location. All files have the file name extension: .rfd.

Save Setup

File > Save Setup, File > Save Setup As...

You can save the setup file in any of the following formats: .rfs and .txt.

Use File > Save Setup to save an existing setup file with the same name. If you are saving the setup for the first time, the Save Setup option works exactly as the Save Setup As... option.

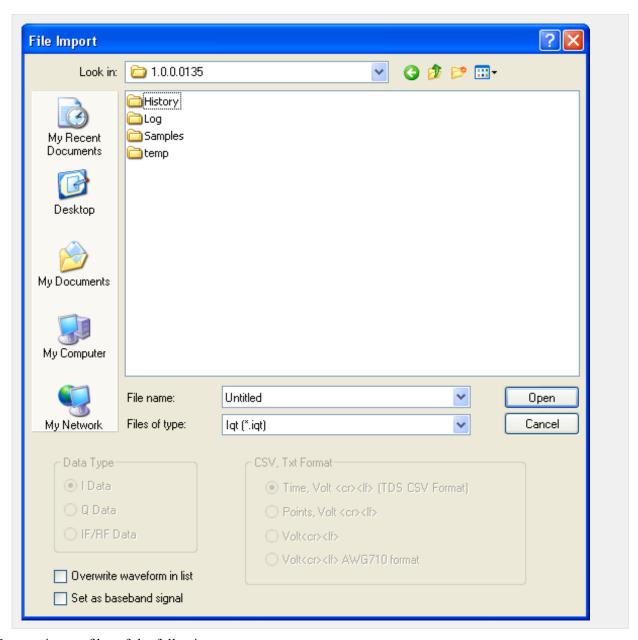
Use File > Save Setup As... to save the setup file with another file name.

Operating Basics Save Data

Save Data

File > Save Data, File > Save Data As...

You can save the data file in either .rfd or .txt format. You must compile a setup before you can save the data. If you try to save a setup as data without compiling, you are prompted to compile the setup.


Use File > Save Data to save an existing data file with the same name. If you are saving the data for the first time, the Save Data option works exactly as the Save Data As... option.

Use File > Save Data As... to save the data file with another file name.

Import Data from a File

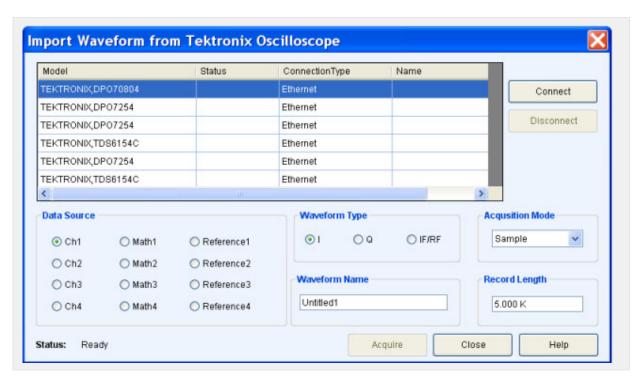
File > Import from File

You can import a waveform file created in another software, and import the resulting waveform into RFXpress. To import data from a file, select File > Import from file. This dialog box is displayed. Navigate to the directory of choice and select the file to import.

You can import files of the following types:

- .wfm from oscilloscopes and arbitrary waveform generators
- .iqt from real-time spectrum analyzers (RSA3000 series)
- .tiq from real-time spectrum analyzers (RSA6000 series)
- pat from arbitrary waveform generators
- .isf from oscilloscopes
- .csv (comma separated file)
- .txt (text file)

The following options are available:


Table 8: File import options and their description

Selection	Description	Default value
Data Type: I Data, Q Data, IF/RF Data	Select the data type to specify the type of data contained in the file. Enabled only when the file formats are .csv and .txt	I Data
CSV, Txt Format	Specifies the parameters contained in the csv or text file:	Time, Volt <cr><lf> (TDS CSV format)</lf></cr>
	Time, Volt <cr><lf> (TDS CSV format)</lf></cr>	
	Points, Volt <cr><lf></lf></cr>	
	Volt <cr><lf></lf></cr>	
	Volt <cr><lf>, AWG710 format</lf></cr>	
	Enabled only when the file format is .csv or .txt.	
Overwrite waveform in list	When selected, overwrites the waveform present in the waveform list without any warning.	Disabled
Set as baseband signal	When selected, replaces any existing carriers with two carriers representing the baseband signal. This option is available only when an iqt or tiq file is selected for import and the selected application is Generic Signal.	Disabled

Import from Tektronix Oscilloscope

File > Import from Tektronix Oscilloscope

You can import a waveform file from a Tektronix oscilloscope that is connected to your instrument into RFXpress. To do this, select File > Import from Tektronix Oscilloscope. This dialog box is displayed.

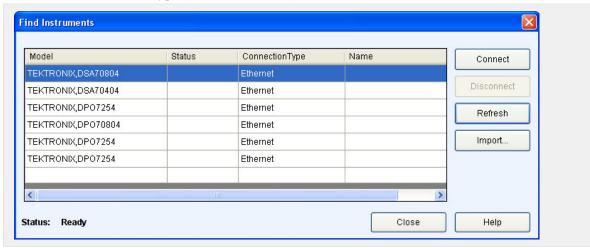
A table displays a list of oscilloscopes on the network. Select an oscilloscope in the table and click Connect to connect to it. You can connect to more than one oscilloscope at a time. Click Disconnect to disconnect from an oscilloscope.

For a connected oscilloscope, you can set the following parameters:

Table 9: Waveform import options and their description

Selection	Description	Default value
Data Source	Select the data from which to acquire the waveform data: Ch1 to Ch4, Math1 to Math4, and Reference1 to Reference4.	Ch1
Waveform Type	Select the type of waveform: I, Q, or RFIF.	I
Waveform Name	Specify the waveform name. The imported waveform is saved in the specified name.	N/A
Acquisition Mode	Set the acquisition mode to one of the following: Samples, Peak Detect, Envelope, or Average.	Samples
Record Length	Displays the record length of the selected oscilloscope. Change the record length by entering a new value in the field.	N/A

Click Acquire to import the data. The specified waveform name is used to list the waveform in the Waveform List.


Operating Basics Find Instruments

Find Instruments

Configure > Find Instruments

You can find instruments on the network and connect to them.

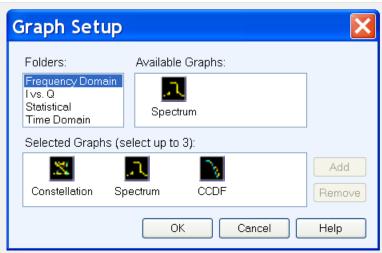
1. Click Find Instruments to find other instruments on the network. The following dialog box opens. A table lists the instruments found along with the Name of the instrument, Model, Status (connected or not), and the Connection type (Ethernet or GPIB).

2. Select an instrument from the table. Use the following buttons to:

Table 10: Find instruments options and their description

Button	Description	
Connect	Connect to the instrument selected in the table. Connect is enabled by default if an instrument is highlighted in the table; disabled if no instrument is highlighted.	
Disconnect	Disconnect the connected instrument. Enabled only if highlighted instrument is connected.	
Refresh	Refresh the list of instruments.	
Import	Open the Import from Tektronix Oscilloscope dialog box to select a file to import.	

3. Click Connect to connect to the selected instrument. The Status provides the current status during the refresh operation: Searching Instruments or Ready.


Graph

Waveform > Show Graph or Graph Settings

Operating Basics Graph

The software allows you to select the types of graphs before creating them. The graphs are displayed in two modes: as a set in a small window (for preview), and as individual graphs in large independent windows. At any time, a maximum of three graphs can be displayed in the small view.

To specify the graphs to create, click Graphs in the toolbar or Waveform > Graph from the menu. The Graph Setup dialog box opens.

Follow these steps to select the graphs to create:

- 1. Highlight a folder on the left. The graphs are grouped into the following folders: Frequency Domain, I vs. Q, Statistical, and Time Domain.
- **2.** Highlight a graph from Available Graphs on the right. Click Add to add the graph to the Selected Graphs area or drag and drop the graph to the Selected Graphs area.

The following folders and graphs are available:

- Frequency Domain: Spectrum
- I Vs Q: Constellation
- Statistical: CCDF and Eye Diagram
- Time Domain: I & Q vs. time, and Pulse shape

NOTE. Once three graphs are added to Selected Graphs, the software will not allow you to add any more graphs. You must remove a graph before you can add another graph.

To remove a graph, highlight a graph in Selected Graphs and click Remove.

3. Click OK to view the graphs. the graphs are displayed in the Graph Preview tab. If you have selected fewer than three graphs, the other window (or windows) will be empty.

You can also create graphs from the Waveform List as follows:

- 1. Select a waveform from the Waveform List.
- **2.** Right-click to view the shortcut menu.

Operating Basics Graph

3. Select Show Graph and select the type of graph to generate. The graph is displayed in a large independent window.

Graph Preview

Graph Preview is a tab in a window that is shared with Instrument Control. Click the Graph Window tab to open it as a docked window.

When RFXpress first launches, Graph Preview is closed by default. Thereafter, RFXpress will reopen in the tab in the same state that it was in when you last exited the application.

Large Graph Windows

1. In the Graph Preview tab, click Maximize to view a graph in a larger window. The selected graph is displayed in a larger window.

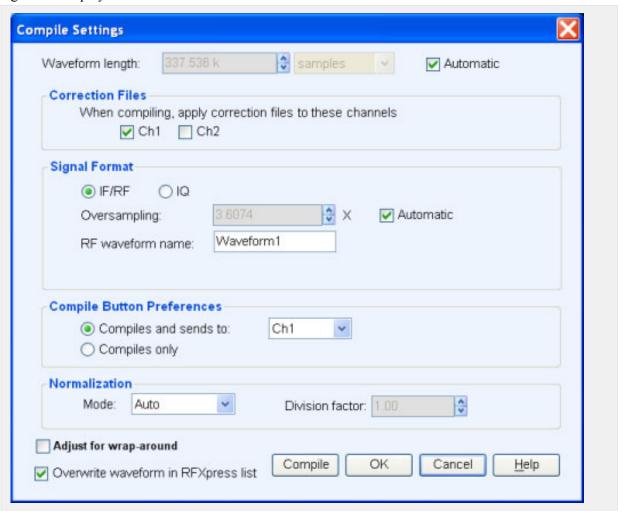
NOTE. When no graphs are selected, Maximize is not available.

The Zoom In and Zoom Out buttons are available in the following graphs: Spectrum, and I(t) Q(t)

Cursors, Cursor Readouts and the difference (Delta) between the cursors are available for the following graphs: Spectrum, I(t) Q(t), and CCDF.

2. Click to close the graph and return to the small view.

Graphs from External Data


You can import data from a file (File > Import from File) and create graphs using the data. The imported file is displayed in the <u>Waveform List</u>. Select the file from the Waveform List, right-click, and click Show Graph.

Operating Basics Compile Settings

Compile Settings

Waveform > Compile Settings

To specify compilation settings for the currently active Waveform Setup, click Compile Settings. This dialog box is displayed.

RFXpress supports generation of two signal types. The number of waveforms generated varies depending on the signal format selected.

- Baseband signals (IQ format): When the IQ signal format is selected, two baseband waveforms I and Q are generated. You must specify the names of each waveform.
- RF signals (IF/RF format): When the RF signal format is selected, the baseband waveforms I and Q are also generated. So after compiling, three different files are generated.

For example, if the waveform name is Test, the generated waveforms are: Test I, Test Q, and Test.

Operating Basics Compile Settings

The Correction Files option is available only when the selected application is UWB-WiMedia and the Compile Button Prefs option is available only when the AWG software is detected.

Table 11: Compile settings options and their description

Selection	Description	Range, Default value
Waveform length (Symbols, Samples) ¹	Specifies the time domain length of the resulting waveform. It can be expressed in Samples or Symbols.	Determined by the maximum waveform memory of the instrument.
Automatic	Calculates the waveform length automatically, based on the setup parameters and the AWG model. To enter the waveform length, disable this option.	Enabled
Correction Files		
When compiling apply correction files to these channels: Ch1, Ch2, Ch3, Ch4	Available and enabled for each channel on the instrument. For two-channel instruments, only Ch1 and Ch2 are visible. When a channel is selected, the corrections are applied from the file during compilation. If no file exists, you are prompted to either create a correction file in the Calibration window, or compile without applying correction files.	Disabled
Signal Format		
IF/RF	Sets the signal format to IF/RF.	N/A
IQ	Sets the signal format to IQ.	N/A
Oversampling ²	Specify the oversampling value.	Automatic
Automatic	Calculates the oversampling automatically, based on the setup parameters and the AWG model. To enter the oversampling value, disable this option.	Enabled
RF Waveform Name	Enter the name of the waveform to be generated after compilation. Uses the name entered here for the generated RF waveform.	Waveform1
I Waveform Name	Enter the name of the I waveform to be generated after compilation. Uses the name entered here for the generated I waveform.	Waveform1_I
Q Waveform Name	Enter the name of the Q waveform to be generated after compilation. Uses the name entered here for the generated Q waveform.	Waveform1_Q
Compile Button Prefs		

Operating Basics Compile Settings

Table 11: Compile settings options and their description (cont.)

Selection	Description	Range, Default value
Compiles and sends to	Compiles the currently active waveform setup and sends it to the specified channel.	Ch1
Compile only	Compiles the currently active waveform setup.	N/A
Normalization		
Mode	Select the normalization mode from the following: Auto, Manual.	Auto
	You can normalize a waveform such that all points on it lie between +1 and -1.	
Division factor	Enabled when the Normalization Mode is Manual. Specify the division factor to use to divide the waveform values.	0.01 to 100, 1
Adjust for Wrap-Around	When selected, adjusts the waveform for wrap around during oversampling. When cleared, the following message appears: The signal generated from the AWG might have wrap-around artifacts in continuous mode.	Enabled
Overwrite waveform in list	When selected, overwrites any existing waveform of the same name in the waveform list. When this option is disabled, you are prompted to enter a waveform file name.	Enabled

¹ If the Waveform Length is expressed in symbols, the number of samples is approximately given by the product of the number of symbols and the sampling rate divided by the symbol rate.

Click Compile to compile the waveform. A progress bar is displayed during compilation. You can abort the compilation by clicking Cancel.

NOTE. When Adjust for Wrap-Around is enabled and the waveform length is set in samples, the symbol rate of the compiled waveform may be close to, and not exactly the same as, the value specified in the Setup tab. Similarly, when the waveform length is set in symbols, the carrier frequency of the compiled waveform may be close to, and not exactly the same as, the value specified in the Setup tab.

For IF/RF signals, the sampling rate is approximately the product of the maximum carrier frequency and the oversampling. For IQ signals, the sampling rate is approximately the product of the anchor carrier symbol rate and the oversampling. For UWB-WiMedia signals, sampling rate is approximately the product of the highest band group centre frequency and the oversampling.

Operating Basics Option Installation

Option Installation

System > Option Installation...

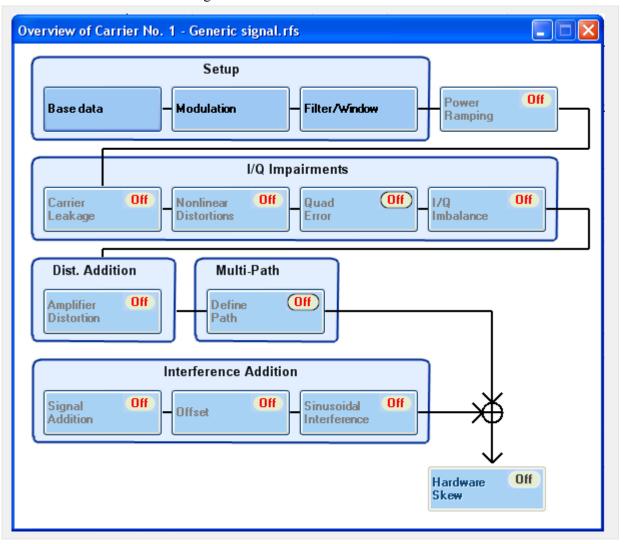
You can use the RFXpress application to generate waveforms but you cannot transfer the waveform unless you enable the function with a option (license) key.

Click System > Option Installation.... This dialog box is displayed.

Table 12: Option installation information and their description

Selection	Description	
User Name	Enter the user name.	
Serial Number	Enter the serial number that is provided along with the software.	
Option Key String	Enter the option key string that is provided along with the software.	
Option Information	The option information is displayed in the table.	

Click Copy Option Info to copy the information in the table to the clipboard. Click Apply to apply the entered values.

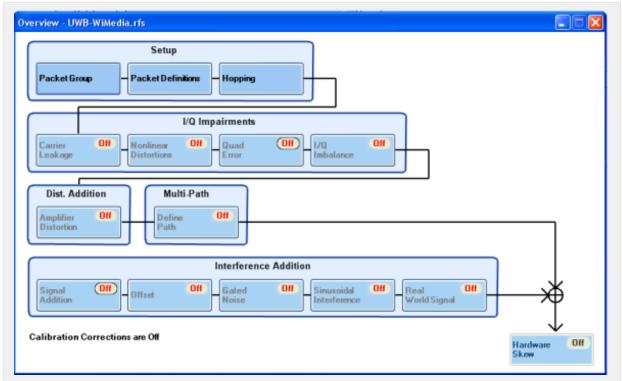

Operating Basics Overview

Overview

Window > Overview

Click Window > Overview to open the overview window. A block view of the active waveform appears in a new window. This window is a floating window and can be moved around the screen. Each larger grouping in the diagram corresponds to a tab.

For a Generic Signal, you must select a carrier before you select the Overview option. The Overview window for a carrier has the following blocks:


- Setup includes Base Data, Modulation, and Filter/Window
- Power Ramping
- I/Q Impairments includes Carrier Leakage, Nonlinear Distortions, Quad Error, and I/Q Imbalance

Operating Basics Overview

- Distortion Addition includes Amplifier Distortion
- Multi-Path includes Define Path
- Interference Addition includes Signal addition, Offset, and Sinusoidal Interference
- Hardware Skew

NOTE. When no carriers are selected in the Carrier table, selecting Overview will open the Overview Window with all the On/Off buttons set to Off (default). Clicking the On/Off buttons will not have any effect.

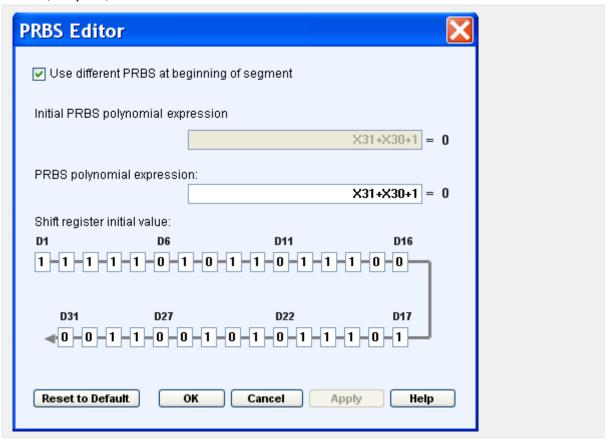
For a UWB Signal, you must select a packet group before you select the Overview option. The Overview window has the following blocks:

- Setup includes Packet Group, Packet Definitions, and Hopping
- I/Q Impairments includes Carrier Leakage, Quad Error, I/Q Imbalance, and Nonlinear Distortions
- Distortion Addition includes Amplifier Distortion
- Multi-Path includes Define Path
- Interference Addition includes Signal Addition, Offset, Gated Noise, Sinusoidal Interference, and Real World Signal
- Hardware Skew

The On/Off button in the upper right corner of each block in a block corresponds to the Turn On check box in the appropriate group.

Operating Basics PRBS Editor

■ If the group does not have a Turn On check box, then no On/Off button appears on the block.


- If the check box is cleared, the button text is Off (red), and the block appears dimmed.
- If the check box is selected, the button text is On (green) and the block appears active. The button on the block and the check box in the group box are linked—if you change one, the change is reflected in the other. The on/off values for each block correspond to the currently selected carrier or packet group.

Clicking a block (even if dimmed) brings the File window forward with the corresponding tab at front. Within the tab, the first setting in the group box that corresponds to the block is highlighted.

To turn on or turn off the calibration corrections, click Configure > Calibration.

PRBS Editor

This dialog box is displayed upon clicking PRBS Editor when PRBS is set to User-defined in the Base Data field (Setup tab).

This data source can generate different pseudo-random binary sequences. You can select PRBS 7, PRBS 9, PRBS 15, PRBS 16, PRBS 20, PRBS 21 and PRBS 23 in the field to the right of the PRBS button.

PRBS sequences are generated by a feedback shift register. The number (#) following PRBS indicates the length of the generating shift register. For instance, a shift register with 16 memory cells is required to generate a PRBS 16 sequence. The pseudo-random sequence of a PRBS generator is determined by the number of registers and the feedback.

Operating Basics Data Source Values

Table 13: PRBS editor options and their description

Selection	Description	Default value
Use different PRBS at beginning of segment	When selected, allows you to define a PRBS polynomial expression. The polynomial that you define will be used at the beginning of every sequence. The value of X ranges between 1 and 31.	Disabled
Initial PRBS polynomial expression	Enter an expression in the format Xn1+Xn2+1 to add to the initial part of the PRBS polynomial expression. The value of Xn ranges between 1 and 31. Enabled when Use different PRBS at beginning of segment is disabled.	X31+X30+1
PRBS polynomial expression	Enter an expression in the format Xn1+Xn2+1 to generate the pseudo-random sequence. The value of Xn ranges between 1 and 31.	X31+X30+1
Shift register initial value D1– D31	Enter values in the shift registers to create the sequence. The registers D1 through D31 can take the values 0 and 1.	D1– D31

Click Apply to effect the changes. Click Reset to Default to restore the editor to the default values. Refer to the Appendix for more information on the taps and the seed (starting values).

See also:

PRBS Editor Starting Values

Data Source Values

This dialog box is displayed when you set the Base Data selection to File and browse for the file. The file formats supported are .txt and .dat. Once you select a file, the data values are taken from that file.

The following conditions must be met for a valid file:

- Any ASCII file, delimited or not, can be used as the data source.
- The next bit will be generated by reading the file until a 0, 1, x, or X character is found. 0 and 1 will add the corresponding bit to the sequence; the x and X character will add a new random bit.
- Any other intermediate character will be ignored.
- When the end of the file has been reached, the file is read again from the beginning based on the Record Length.
- The data can be organized by columns or rows.
- Any number of space, tab, or comma characters can be used as a delimiter.
- Empty lines or invalid lines at the beginning and end of the file are ignored.

Modulation File1(Samples)

This dialog box is displayed when File1(Samples) is selected in the Modulation field (Setup tab).

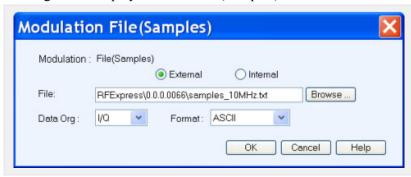


Table 14: Modulation File1(Samples) options and their description

Selection	Description	Default value
External	Select External to specify an external file taken from a specified path.	External
Internal	Select Internal to specify a file to be taken from the Waveform List. Click the icon next to the File field and a list of waveforms appears.	N/A
File	Select the modulation file to be used by entering the path or browsing to the file. The file formats supported are: .txt, .dat, and .bin.	N/A
Data Org	Specify the organization of data within the selected file: I/Q, Q/I, I Only, or Q Only. When Internal is selected, the available options are I Only and Q Only.	I Only
Format	Specify the format of the selected file: ASCII, Binary(float), or Binary(double). This option is not available when External is selected.	ASCII

The Data Org field is used to indicate the organization of data as follows within the selected file:

- I/Q: The first value of data (until a delimiter) read is considered as I and the next as Q. This will continue to the end of the file.
- Q/I : The first value of data read (until a delimiter) is considered as Q and the next as I. This will continue to the end of the file.
- I Only: All the data read are considered as I, and Q is assigned to zero.
- Q Only: All the data read are considered as Q, and I is assigned to zero.

NOTE. If you have defined different files for the I and Q components, then you must define two carriers in the list with the same basic parameters and select the corresponding component in the Data Organization field.

The Format field is used to specify the file format. The following conditions must be met for a selected file format:

- When the file format is ASCII, the data should be in floating point precision. Spaces and tabs are ignored. Any other characters are considered invalid. RFXpress stops reading data when it encounters invalid data.
- When the file format is Binary(float), the data should be in binary format with floating point precision.
- When the file format is Binary(double), the data should be in binary format with double point precision.

When the end of the file has been reached, the file is read again from the beginning, based on the Record Length.

NOTE. The external file should contain signals with average power of 1 Vrms. You should scale the data appropriately to ensure that the file contains signals with an average power of 1 Vrms.

Modulation File2(Symbols)

This dialog box is displayed when File2(Symbols) is selected in the Modulation field (Setup tab).



Table 15: Modulation File2(Symbols) options and their description

Selection	Description	Default value
File	Select the modulation file to be used by entering the path or browsing to the file. The file formats supported are: .txt, .dat, and .bin	N/A
Data Org	Specify the organization of data within the selected file: I/Q, Q/I, I Only, or Q Only	l Only
Format	Specify the format of the selected file: ASCII, Binary(float), or Binary(double)	ASCII

The Data Org field is used to indicate the organization of data as follows within the selected file:

■ I/Q: The first value of data read (until a delimiter) is considered as I and the next as Q. This will continue to the end of the file.

Operating Basics Symbol Map

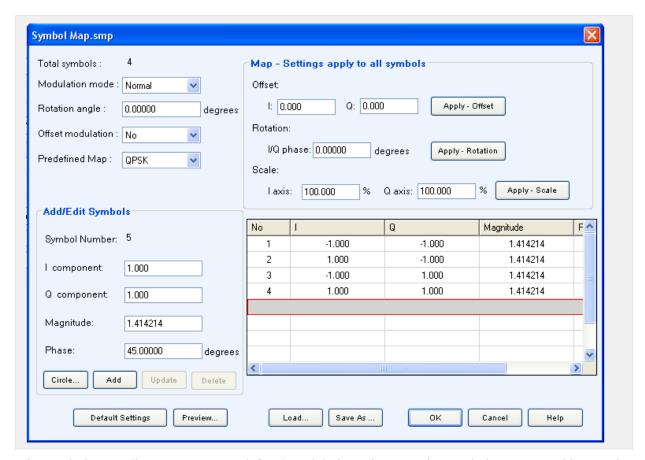
■ Q/I : The first value of data read (until a delimiter) is considered as Q and the next as I. This will continue to the end of the file.

- I Only: All the data read are considered as I, and Q is assigned to zero.
- Q Only: All the data read are considered as Q, and I is assigned to zero.

NOTE. If you have defined different files for the I and Q components, then you must define two carriers in the list with the same basic parameters and select the corresponding component in the Data Organization field.

The Format field is used to specify the file format. The following conditions must be met for a selected file format:

- When the file format is ASCII, the data should be in floating point precision. Spaces and tabs are ignored. Any other characters are considered invalid. RFXpress stops reading data when it encounters invalid data.
- When the file format is Binary(float), the data should be in binary format with floating point precision.
- When the file format is Binary(double), the data should be in binary format with double point precision.


When the end of the file has been reached, the file is read again from the beginning, based on the Record Length.

NOTE. The external file should contain signals with average power of 1 Vrms. You should scale the data appropriately to ensure that the file contains signals with an average power of 1 Vrms.

Symbol Map

This dialog box is displayed when File3(Map) is selected in the Modulation field (Setup tab).

Operating Basics Symbol Map

Use the symbol map editor to create user-defined modulation schemes. The Symbol Map created is stored in a binary format. This is useful for unsupported modulation schemes and to introduce impairments with the simulated waveform.

Table 16: Symbol map options and their description

Selection	Description	Range, Default value
Total symbols	Displays the total number of symbols entered.	2 to 512, 4
Modulation mode	Select the modulation mode: Normal, Diff (Continuous), Diff (Alternate). Sets the selected modulation mode.	Normal
Rotation angle	Specify the rotation angle between I and Q.	–180° to +180°, 0°
Offset modulation	Indicates whether to apply offset modulation or not: Yes, No. Selecting Yes applies offset modulation.	No
Predefined map	Causes a dropdown list to appear with the following selections: None, BPSK, QPSK, QAM16, QAM32, QAM64, QAM128, and QAM256.	QPSK
Add/Edit Symbols		

Operating Basics Symbol Map

Table 16: Symbol map options and their description (cont.)

Selection	Description	Range, Default value
I component	Specify the I component of the modulation.	-100 to +100, 1
Q component	Specify the Q component of the modulation.	-100 to +100, 1
Magnitude ¹	Specify the magnitude of the modulation.	0 to 141.421, 1.414214
Phase ¹	Specify the phase of the modulation.	–180° to +180°, 45°
Map - Settings apply to all symbols		
Offset I	Specify the offset for the I component.	-100 to +100, 0
Offset Q	Specify the offset for the Q component.	-100 to +100, 0
Rotation I/Q phase	Specify the phase rotation between I and Q.	–180° to +180°, 0°
Scale I axis (%)	Specify the scale factor for the I component.	0% to 500%, 100%
Scale Q axis (%)	Specify the scale factor for the Q component.	0% to 500%, 100%

¹ The Magnitude and Phase parameters depend on the value of the I and Q components. If you change the value of the I and Q components, the Magnitude and Phase values are recalculated and updated. Similarly, if you change the Magnitude and Phase values, the values of the I and Q components are recalculated and updated.

Clicking Apply Offset, Apply Rotation, and Apply Phase applies the values to the Map Settings parameters. The table is updated according to the newly applied values.

The following buttons work as listed:

Table 17: Symbol map buttons and their description

Selection	Description	
Circle	Defines a circular constellation with equal magnitude. Opens a dialog box with the following parameters: Number of Symbols, Radius, Phase offset.	
Add	Adds I, Q, Magnitude, and Phase values to the table.	
Update	Updates the selected row from the table.	
Delete	Deletes the selected row from the table.	
Default Settings	Clears all the symbol map information and resets to default values. This is equivalent to opening the Symbol Map dialog box.	
Preview	Previews the table values as a plot.	
Load	Loads a previously saved symbol file (.smp) and displays the values in the fields.	
Save As	Saves all the parameters in a user-specified file (.smp) and location.	

Operating Basics Calibration

Circle

Click Circle to define a constellation window that allows you to create equally spaced symbols in a circle of a specified radius. You can define an offset angle to rotate the constellation. The Circle dialog box has the following options:

Table 18: Circle options and their description

Selection	Description	Range, Default
Number of symbols	Enter the number of symbols to use while creating the constellation.	2 to 512, 4
Radius	Enter the radius of the circle.	-5.0 to +5.0, 1
Phase offset	Enter the phase offset.	–180° to +180°, 0°
Reset Phase Offset		
0 degrees	Select this option to set the phase offset to zero.	Selected
	Press Reset to set the phase to 0 degrees.	
Half the angle between consecutive signals	Select this option to set the phase offset to half the angle between consecutive signals.	N/A
	Press Reset to set the phase to half the angle between consecutive signals.	
Reset	Resets the phase offset to 0 or 90 depending on the selected phase offset.	N/A

NOTE. The external file should contain signals with average power of 1 Vrms. You should scale the data appropriately to ensure that the file contains signals with an average power of 1 Vrms.

Calibration

Configure > Calibration

To calibrate the signal, click Configure > Calibration. A set of parameters called Calibration Settings are common across channels. Channel-specific settings are provided in each channel tab. This dialog box is displayed. The calibration settings are as follows:

Operating Basics Calibration

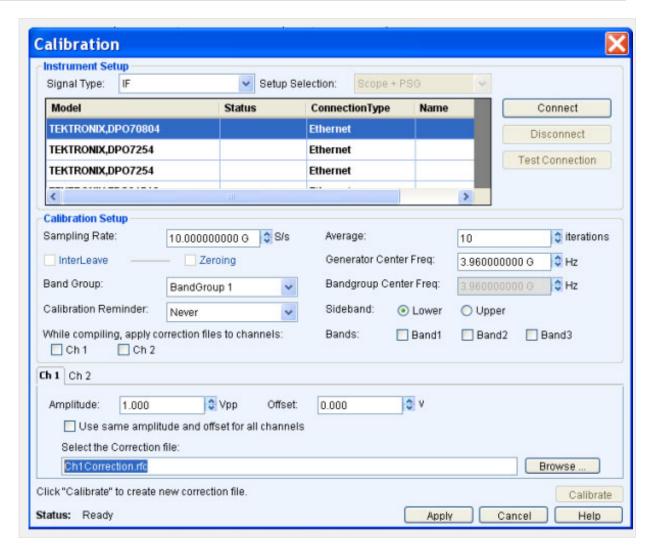


Table 19: Instrument setup option and description

Selection	Description	Default value
Instrument Setup		
Signal Type	Select the signal type for calibration: RF, IF	IF

The table displays a list of instruments on the network. The instrument model, status, connection type, and instrument name (alias) are shown but they are not editable. The following buttons are available:

Table 20: Instrument setup buttons and their description

Button	Description	
Connect Connects to the instrument selected in the table and updates the status to Connecte the table.		
Disconnect	Disconnects to the instrument selected in the table and updates the status in the table.	
Test Connection	Returns the current status of the instrument selected in the table and displays the status as Connected (in green) or Not Connected (in red).	

Operating Basics Calibration

Table 20: Instrument setup buttons and their description (cont.)

The Calibration Settings and Channel-specific settings are as follows. All the calibration settings that are set in RFXpress are updated on the connected instrument.

Table 21: Instrument setup options and their description

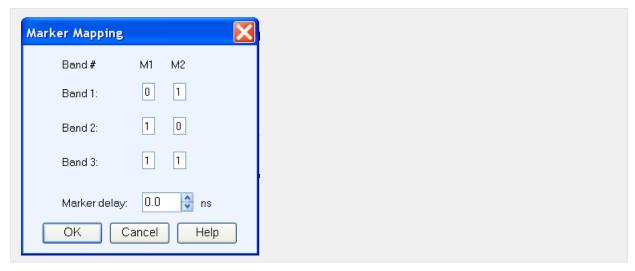
Selection	Description	Range, Default value
Calibration Setup		
Sample rate (samples/sec)	Displays the sampling rate of the instrument. If you change the sampling rate, the same is updated in the instrument.	N/A
<u>Interleave</u>	Enabled if the signal type is either RF or IF.	N/A
Zeroing	Enabled only when Interleave is available on the instrument.	N/A
Band Group	Select the band group of the signal from the following options: User defined, BandGroup1, BandGroup2, BandGroup3, BandGroup4, BandGroup5, and BandGroup6. For direct RF generation, the	BandGroup1
	available options are: User Defined, BandGroup1 and BandGroup2.	
Calibration Reminder	Select a reminder to create calibration files periodically: Once a day, Once a week, Once a month, and Never.	Never
Average (iterations)	Enter the number of times the software sends and captures the signal through the user-defined configuration to create an average.	1 to 100, 10
Generator Center Freq (MHz)	Enter the center frequency for the generated signal. This should be same as Band Group Center Frequency when the signal type is RF.	N/A
	Enabled only for signal type IF with the range of 800 MHz to 10 GHz. Not available for signal types RF and IQ.	
Bandgroup Center Freq (MHz)	Enter the center frequency for the user-defined band group. Enabled only when BandGroup is set to User-Defined for RF and IQ signals in the range of 500 KHz to 10 GHz and for IF signals in the range of 1GHz to 20 GHz.	N/A

Operating Basics Marker Mapping

Table 21: Instrument setup options and their description (cont.)

Selection	Description	Range, Default value
Sideband: Lower, Upper	Set the sideband value to the lower or the upper limit. Enabled only for IF signals.	Lower
When compiling, apply corrections to these channels: Ch1, Ch2, Ch3, Ch4 Bands: Band1, Band2, Band3	Applies corrections to the selected channels and bands (within the selected BandGroup) when you click Compile. If the corrections file is not found, you are warned. However, you can continue without applying calibration.	N/A
Channel-specific parameters		
Amplitude (Vpp)	Displays the amplitude of the channel. To change it, set a new value for the amplitude.	N/A
Offset (V)	Displays the offset of the channel. To change it, set a new value for the offset.	N/A
Use the same amplitude and offset for all channels	Uses the amplitude and offset set for a channel for all available channels.	N/A
Select the Correction file	Specify the correction file to create. The correction file that you specify will be used when you compile the signal.	N/A

Click Calibrate to create the correction files. The correction file that is created can be used to pre-distort the signal so that the final signal that is generated is an ideal signal.


Click OK to set the correction file and parameters that will be used during compile. In <u>Compile Settings</u> if the option "When compiling apply correction files to these channels" is selected, the correction file specified in the Calibration dialog box is used to apply corrections.

NOTE. Interleave and Zeroing are available only on the AWG7000 series of instruments with Option 06.

Marker Mapping

This dialog box is displayed when you click Marker Mapping... in the Setup tab (UWB-WiMedia) in both Custom and Conformance modes. The markers M1 and M2 are tightly coupled to the band ID. Marker mapping is used to provide hopping information to the external RF hopper. The marker information will be transferred along with IF/RF, I, and Q data. You can use marker information from any channel where analog data is generated.

Operating Basics Marker Mapping

You can set the following options for markers M1 and M2. The marker pattern generated, based on the following settings, can be used for triggering an external device.

Table 22: Marker mapping options and their description

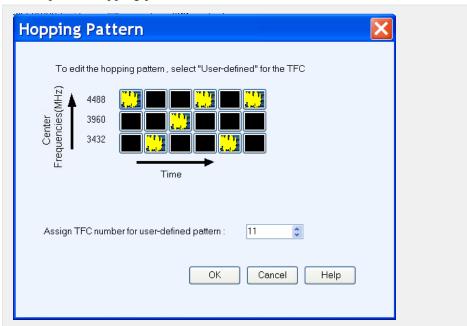
Selection	M1, M2	Description	Default value
Band 1	Enter M1 and M2 values. The values can be 0 or 1	Sets the marker pattern for Band 1	0, 1
Band 2	Enter M1 and M2 values. The values can be 0 or 1	Sets the marker pattern for Band 2	1, 0
Band 3	Enter M1 and M2 values. The values can be 0 or 1	Sets the marker pattern for Band 3	1, 1
Marker delay (ns)	N/A	Enter the marker delay in nanoseconds. It defines the	Range: -312.5 to + 312.5 ns
		delay in marker transition with respect to the symbols.	Default: 0.0 ns

NOTE. The Marker Mapping dialog box shows a warning message when the AWG is set with 10-bit DAC resolution.

Operating Basics Tone Nulling

Tone Nulling

This dialog box is displayed when you click Tone Nulling... in the Setup tab (UWB-WiMedia) in both Custom and Conformance modes. For the selected Band Group, the tone nulling table shows the carrier number, the amplitudes, and the phases of Band 1, Band 2, and Band 3 in dB. The amplitude and phase fields are editable. Double-click the field and enter a new amplitude for the selected carrier and band.


The amplitude values are relative to the amplitudes specified for each band. The tone nulling value ranges between -40 dB and +20 dB. For example, if a carrier or tone value is set to -40 dB, the amplitude of the tone is 40 dB less than that specified for the band to which it belongs. The phase value ranges from -180 degrees to +180 degrees.

Click Default to restore the band values to their default values.

Operating Basics Hopping Pattern

Hopping Pattern

This dialog box is displayed when you set the TF Code and click Hopping... in the Setup tab in the Custom Mode (UWB-WiMedia). The hopping pattern for the selected Band Group and TF Code is displayed. The X-axis (horizontal) shows Time and the Y-axis (vertical)shows the Center Frequencies for the selected Band Group. The hopping pattern is not editable.

To customize a hopping pattern, set the TF Code to User Defined. You can define a hopping pattern by clicking the black squares in each column. This sets the frequency at which a packet is transmitted for each band in a band group. After you have defined the hopping pattern, assign a TFC number (between 1 to 15) to the pattern and click OK.

Process Preferences

This dialog box is displayed when you click Process Preferences in the Setup tab (UWB-WiMedia) in the custom mode. The dialog box displays several parameters. In the custom mode, all these parameters can be set for each PPDU or packet listed in the PPDUs in Group table. The fields corresponding to the parameters are editable and take either Binary or Hexadecimal values. You can change these values and use your values when the packet is processed. When the parameters are enabled, the software uses your values while processing the packet. When the parameters are disabled, the software uses calculated values while processing the packet.

Operating Basics Process Preferences

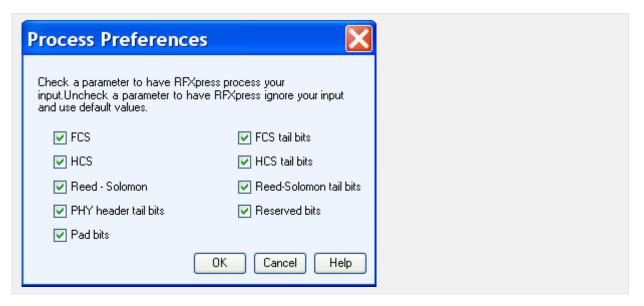
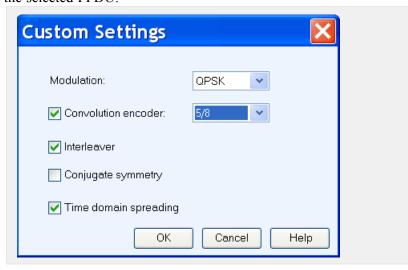


Table 23: Process preferences and their description

Description	Default value
If selected, processes the FCS value set in the field. If cleared, the default value for FCS value is used.	Enabled
If selected, processes the HCS value set in the field. If cleared, the default value for HCS value is used.	Enabled
If selected, processes the Reed-Solomon value set in the field. If cleared, the default value for Reed-Solomon value is used.	Enabled
If selected, processes the PHY header tail bits value set in the field. If cleared, the default value for PHY header tail bits is used.	Enabled
If selected, processes the Pad tail bits value set in the field. If cleared, the default value for Pad bits is used.	Enabled
If selected, processes the FCS header tail bits value set in the field. If cleared, the default value for FCS header tail bits is used.	Enabled
If selected, processes the HCS tail bits value set in the field. If cleared, the default value for HCS header tail bits is used.	Enabled
	If selected, processes the FCS value set in the field. If cleared, the default value for FCS value is used. If selected, processes the HCS value set in the field. If cleared, the default value for HCS value is used. If selected, processes the Reed-Solomon value set in the field. If cleared, the default value for Reed-Solomon value is used. If selected, processes the PHY header tail bits value set in the field. If cleared, the default value for PHY header tail bits is used. If selected, processes the Pad tail bits value set in the field. If cleared, the default value for Pad bits is used. If selected, processes the FCS header tail bits value set in the field. If cleared, the default value for FCS header tail bits is used. If selected, processes the HCS tail bits value set in the field. If cleared, the default value for FCS header tail bits value set in the field. If cleared, the default value for HCS header tail

Operating Basics Custom Settings


Table 23: Process preferences and their description (cont.)

Selection	Description	Default value
Reed-Solomon tail bits	If selected, processes the Reed-Solomon tail bits value set in the field. If cleared, the default value for Reed-Solomon tail bits is used.	Enabled
Reserved bits	If selected, processes the Reserved bits value set in the field. If cleared, the default value for Reserved bits value is used.	Enabled

When you click Process This Packet in the custom mode, the software processes the packet and displays the output in the fields.

Custom Settings

This dialog box is displayed when you click Rate (Selected PPDU Details) in the Setup tab (UWB-WiMedia) in the Custom mode. It displays the custom settings that directly affect the data rate of the selected PPDU.

The settings in the custom mode are as follows:

Table 24: Custom settings and their description

Selection	Description	Default value
Modulation	Select the modulation to QPSK or DCM.	QPSK

Operating Basics Custom Settings

Table 24: Custom settings and their description (cont.)

Selection	Description	Default value
Convolution encoder	Select the convolution encoder and set it to one of the following selections: 1/3, 1/2, 5/8, 3/4.	Enabled, 5/8
Interleaver	Select or clear interleaver.	Enabled
Conjugate symmetry	Select or clear conjugate symmetry.	Disabled
Time domain spreading	Select or clear time domain spreading.	Enabled

The following table lists the PSDU data rate-dependent modulation parameters.

Table 25: PSDU data rate-dependent modulation parameters

Data Rate (Mb/s)	Modulation	Coding rate	Conjugate symmetry	TDS	
53.3	QPSK	1/3	Yes	Yes	
80	QPSK	1/2	Yes	Yes	
106.7	QPSK	1/3	No	Yes	
160	QPSK	1/2	No	Yes	
200	QPSK	5/8	No	Yes	
320	DCM	1/2	No	No	
400	DCM	5/8	No	No	
480	DCM	3/4	No	No	

NOTE. If you select one of the standard settings that results in a standard data rate, the MAC for the data rate takes the bits from the standard. If the setting results in a non-standard data rate, the bit setting will be "11111".

Frame Payload

This dialog box is displayed when you click Frame Payload (Selected PPDU Details) in the Setup tab (UWB-WMedia) in the Custom mode.

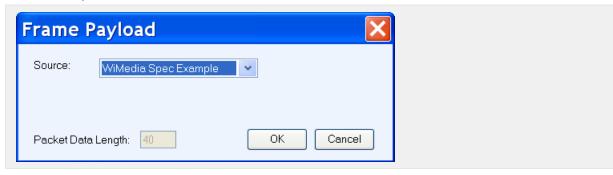


Table 26: Frame payload options

Selection	Description	
Source	Select the source for the data to be transmitted from the following selections: WiMedia Spec Example, All 0, All 1, PRBS 7, PRBS 9, PRBS 15, PRBS 16, PRBS 20, PRBS 21, PRBS 23, and From File.	
File	Select the file to be used by entering the path or browsing to the file. Uses the specified file (.txt or .dat) as the source of data to be transmitted.	
Packet Data Length	Displays the packet data length. Used along with the payload data length and the number of packets to calculate the data to be sent in one packet.	

The following conditions must be met for a valid file:

- Any ASCII file, delimited or not, can be used as the data source.
- The next bit will be generated by reading the file until a 0, 1, x, or X character is found. 0 and 1 will add the corresponding bit to the sequence while the x and X character will add a new random bit.
- Any other intermediate character will be ignored.
- When the end of the file has been reached, the file is read again from the beginning, based on the Record Length.
- The data can be organized in columns or rows.
- Any number of space, tab, comma characters can be used as a delimiter.
- Empty lines or invalid lines at the beginning and end of the file are ignored.

Single Carrier

In the Setup tab (Generic Signal) by default, Single Carrier is selected in the Carriers field. A carrier is displayed in the carrier table and is selected. When Single Carrier is selected, you cannot add another carrier; you must switch to Multi Carrier to add another carrier.

IF/RF Signal

When the signal type is IF/RF, the table displays the following: Carrier number, Frequency (MHz), Amplitude (dBm), Symbol rate (MHz), Modulation, Filter, Alpha/B*T parameter, and State (ON by default).

The Single Carrier group options show Frequency in Hz and Amplitude in dBm in 50-ohm load.

Table 27: Single carrier group options for IF/RF signal

Selection	Description	Range, Default value
Signal type: IF/RF		
Frequency (Hz)	Enter the carrier frequency in Hz.	Depends on the instrument bandwidth, 10M
Amplitude (dBm)	Enter the amplitude of output signal in dB.	-100.00 dBm to + 30 dBm, 0

IQ Signal

When the signal type is IQ, the table displays the following: Carrier number, Offset (MHz), Amplitude (Vrms), Symbol rate (MHz), Modulation, Filter, Alpha/B*T parameter, and State (ON by default).

The Single Carrier group options show Baseband Offset in Hz and Amplitude in Vrms.

Table 28: Single carrier group options for IQ signal

Selection Description		Range, Default value	
Signal type: IQ			
Baseband Offset (MHz)	Enter the carrier frequency offset in Hz.	Depends on the instrument bandwidth, 0	
Amplitude (Vrms)	Enter the amplitude of out put signal in Vrms.	0 to 5 Vrms, 1	

NOTE. None of the items in the shortcut menu are available in the single carrier table.

Multi Carriers

In the Setup tab (Generic Signal), select Multi Carrier in the Carriers field. An anchor carrier is displayed in the table. To add a carrier, in the Add Carrier field, type the number of carriers to add. The maximum

number of carriers you can have in the table is 512. Each row in the table corresponds to one carrier. If you try to enter more than 512 carriers, you will be reminded that the maximum number of carriers is 512.

A signal must be repeated to obtain a continuous output for AWGs. To avoid discontinuities at the transition between the end and the beginning of any pair of segments, the application takes care to avoid all the "wrap-around" artifacts. For a modulated carrier, to have a signal free of wrap-around artifacts, a set of conditions must be met by the signal:

- An integer number of carrier cycles must be available in the segment for any given carrier.
- An integer number of symbols must be available in the segment for any given carrier.

In general, it is difficult to meet these criteria for any given set of carriers if the record length in the target instrument is a finite and integer number. This means that some rounding must be performed. You can select one of the carriers as an anchor carrier to act as a reference. The application calculates the output clock (sampling rate) to preserve some of the frequency characteristics of the anchor carrier. If record length is expressed in samples, the carrier frequency will be preserved. If record length is expressed in symbols, the symbol rate will be the preserved. The actual clock output will be also influenced by the maximum carrier frequency in the carrier table and the oversampling factor. The actual values for carrier frequencies and symbol rates will be shown in the carrier table after compilation.

NOTE. For each carrier, you can define the parameters in each of the tabs: Setup, Power Ramping, I/Q Impairments, Distortion Addition, Multi-Path, and Interference Addition.

IF/RF Signal

When the signal type is IF/RF, the table displays the following: Carrier number, Frequency (MHz), Amplitude (dBm), Symbol rate (MHz), Modulation, Filter, Alpha/B*T parameter, and State (ON by default).

Select the <u>Base Data</u> and set the Amplitude in dBm in 50-ohm load. The Multi Carrier group options allow you add carriers based on:

- Center frequency, where you must provide the Center frequency and Bandwidth.
- Range, where you must provide the Base Frequency and Carrier Spacing.

Table 29: Multi carrier group options for IF/RF signal

Selection	Description	Range, Default value
Signal type: IF/RF		
Center		
Center Frequency (Hz)	Enter the center frequency of the carrier.	1 Hz to the maximum supported by the AWG, 50 MHz
Bandwidth (Hz)	Enter the bandwidth of the carrier.	1 Hz to the maximum supported by the AWG, 100 MHz
Range		
Base frequency (Hz)	Enter the base frequency of the carriers.	1 Hz to the maximum supported by the AWG, 10 MHz

Table 29: Multi carrier group options for IF/RF signal (cont.)

Selection	Description	Range, Default value
Carrier spacing (Hz)	Enter the spacing between carriers.	1 Hz to the maximum supported by the AWG, 10 MHz
Phase shift	Enter the phase shift between the carriers (degrees). Disabled when Random is selected.	–180° to +180°, 0°
Random	When selected, uses a random phase shift value.	Disabled

IQ Signal

When the signal type is IQ, the table displays the following: Carrier number, Offset (MHz), Amplitude (Vrms), Symbol rate (MHz), Modulation, Filter, Alpha/B*T parameter, and State (ON by default).

Select the <u>Base Data</u> and set the Amplitude in Vrms. The Multi Carrier group options allow you to enter the Initial Offset (Hz) and Carrier Spacing (Hz).

Table 30: Multi carrier group options for IQ signal

Selection	Description	Range, Default value
Signal type: IQ		
Initial Offset (Hz)	Enter the initial offset of the carriers.	Depends on the instrument bandwidth
Carrier Spacing (Hz)	Enter the frequency spacing between carriers.	1 Hz to the maximum supported by the AWG, 10 MHz

Editing Carrier Details

If you have more than one carrier and you select a carrier in the table, the Multi Carrier options change to Selected Carrier options. You can set the options for each selected carrier. To edit carrier parameters, highlight the carrier in the table, and then do one of the following:

- The values for all the settings are displayed in the corresponding fields for the selected carrier. As you change the values in the fields, the new values are committed immediately.
- In the table, double-click the parameter that you want to change and directly enter new values. If you select File1 (samples), File2 (Symbols) or File3 (Maps), the corresponding dialog boxes open for you to edit the values. Changing the State to ON or OFF includes or excludes the carrier during compilation.

The Add, Delete and Set Anchor buttons work as follows:

Table 31: Carrier editing options

Selection	Description	State
Add	Adds one or more carriers to the table. All of the carrier parameters use default states.	Add is always enabled.
Delete	Deletes the selected carrier from the table. Select multiple carriers using the Shift or Control keys and dragging the pointer. The carriers are renumbered when you delete a carrier from within the sequence.	Delete is disabled when an empty row or no carrier is selected in the table.
Set Anchor	Sets the selected carrier as the anchor carrier. By default, the first carrier in the table is the anchor carrier.	Set anchor is disabled when an empty row or no carrier is selected in the table.

NOTE. When you add more than one carrier at a time, the Setup tab automatically shows options to allow adding multiple carriers.

If you change from Multi Carrier to Single Carrier, the following message appears: The current anchor carrier will become the single carrier. Do you want to continue? You can click Continue and make the anchor carrier the only carrier in the single carrier mode. You can click Cancel to cancel the operation.

Edit operations are available in the shortcut menu (when you right-click on a selected carrier in the table). The available operations are: Cut, Copy, Paste, Delete, Delete All, and Set Anchor.

Table 32: Editing options in the shortcut menu

Selection	Description	State
Cut	Cuts the current selected row (carrier) and copies the contents to clipboard.	Enabled when a carrier is selected.
Сору	Copies the current selected row (carrier) and copies the contents to clipboard.	Enabled when a carrier is selected.
Paste	Pastes the contents from memory on to the selected row or carrier (replaces the selected row).	Enabled only after a cut or copy operation.
Delete	Deletes the selected row (carrier).	Enabled when a carrier is selected.
Delete All	Deletes all the rows (carriers) in the table.	Always enabled.
Set Anchor	Sets the currently selected row's frequency as anchor frequency.	Enabled when a carrier is selected.

Selecting the Base Data

Follow these steps to select the base data for a signal:

- **1.** Select the Setup tab.
- 2. Select a carrier from the table.
- **3.** In the Base Data field, select the data source. The following table lists the choices for the Base Data field:

Table 33: Multi carrier options for IF/RF signal

Selection	Description	Default value
Base data	Select the data source from the following: All 0, All 1, PRBS, Pattern, File.	PRBS
All 0	Sends a sequence of binary 0 symbols. An example is a data sequence with the length ten $\{d\} = \{0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0\}$.	N/A
All 1	Sends a sequence of binary 1 symbols. An example is a data sequence with the length ten $\{d\} = \{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$	N/A
PRBS	Select the PRBS type from the following: 7, 9, 15, 16, 20, 21, 23, and User-defined.	9
	To edit the bit sequence, select User-defined in the PRBS dropdown menu. This causes the PRBS Editor button to appear.	
Pattern	Enter a pattern of 0s and 1s up to a maximum of 80 digits in the text field that appears.	N/A
File	Select the base data file to be used by entering the path or browsing to the file. The supported formats are .txt and .dat.	N/A

NOTE. If you try to compile the signal without specifying a base data file, the following message appears: RFXpress cannot compile. You must select a file for base data first or change the selection.

Modulation for Carriers

Follow these steps to select the modulation parameters for a signal:

- 1. Select the Setup tab.
- 2. Select a carrier from the table.
- **3.** Set the following modulation parameters:

Table 34: Modulation options for carriers

Selection	Description	Range, Default value
Modulation	Select a modulation type from the following: No Mod, QPSK, BPSK,	No Mod
	PI/4 QPSK, OQPSK, 8-PSK, O-8PSK, QAM-16, QAM-32, QAM-64, QAM-128, QAM-256, QAM-512, QAM-1024, GMSK, 2-FSK, 4-FSK, 8-FSK, 16-FSK, 32-FSK, ASK, AM, PM, FM, File1(Samples), File2(Symbols), and File3(Maps).	
FSK Peak Deviation (Hz)	Enter the FSK peak deviation value. Defined only when the modulation type is set to FSK.	Depends on the instrument bandwidth, 1000 KHz
ASK Mod Index (%)	Enter the ASK modulation index. Defined only when modulation type is set to ASK.	0 to 200%, 1%
AM Mod Index (%)	Enter the AM modulation index. Defined only when modulation type is set to AM.	0 to 200%, 50%
Phase Deviation (degrees)	Enter the phase deviation. Defined only when modulation type is set to PM.	0° to +180°, 10°
Frequency Deviation (Hz)	Enter the frequency deviation. Defined only when modulation type is set to FM.	0 KHz to 10 GHz, 100 KHz
Coding	Specifies the coding parameter: None, Gray, Differential, Gray differential, GSM differential, NADC, TFTS, and MSAT differential.	None
Symbol rate (Hz)	Enter the symbol rate for modulation.	Depends on the instrument bandwidth Default: 1 MHz

When the Modulation parameter is set to File1 (Samples), Base Data, Coding and Filter parameters are not available. The Symbol Rate parameter changes to Input File Sample Rate. When the Modulation parameter is set to File 2 (Symbols), Base Data and Coding parameters are unavailable. When Modulation is set to AM, FM, or PM, the Symbol Rate parameter changes to Modulating Frequency.

You can edit the Modulation parameters from the table by selecting the values in the dropdown list for the parameter. If you select File1 (samples), File2 (Symbols), or File3 (Maps), the corresponding dialog boxes open for you to edit the values.

Filter for Carriers

Follow these steps to select the filter and window parameters for a signal:

- 1. Select the Setup tab.
- 2. Select a carrier from the table.
- **3.** Set the following Filter/Window parameters. The Filter/Window parameters are not available when the modulation type is Amplitude Modulation, Frequency Modulation or Phase Modulation.

Table 35: Filter options for carriers

Selection	Description	Range, Default value
Filter	Select the filter from the following options: Rectangular, Raised Cosine, Root Raised Cosine, Gaussian (Dirac Delta), Gaussian (Rectangular, Triangular, Edge), User defined, and No Filter.	No Filter
Alpha/B*T	Enabled for Raised Cosine, Root Raised	Raised Cosine: 0.0 to 1, 0.35
	Cosine, Gaussian, and Gaussian-2.	Root Raised Cosine: 0.0 to 1, 0.35
		Gaussian Filter B*T: 0.1 to 3.0, 0.5
Convolution length (symbols)	Enter the convolution length. Convolution length is used to calculate the FIR filters impulse response. To keep the pulse shape symmetric, the convolution length has to be given in odd number.	3 to 201, 21 (odd numbers only)
Window ¹	Select the window type from the following: None, Rectangular, Triangular, Hamming, Hanning, Blackman, Kaiser, Blackman-Harris, Exact Blackman, Flat Top, Tapered Cosine, and Chebyshev Ripple. Enabled for Raised Cosine, Root Raised	None
	Cosine, Gaussian, Gaussian-2, Triangular, and Edge.	
Kaiser Parameter (dB)	Enter the Kaiser parameter. Appears only when Window is set to Kaiser.	1 to 10, 2.2
Chebyshev ripple	Enter the Chebyshev Ripple. Appears only when Window is set to Chebyshev.	10 dB to 80 dB, 40 dB

- 1 The window parameter is available only for Chebyshev and Kaiser Windows.
- **4.** When Filter is set to User Defined, a dialog box appears where you can select a file. The supported file name extensions are .txt, .dat and .bin. The Format field is used to specify the file format. Ensure that the following conditions are met for a selected file format:
 - When the file format is ASCII, the data should be in floating point precision. Spaces and tabs are ignored. Any other characters are considered invalid. RFXpress stops reading data when it encounters invalid data.
 - When the file format is Binary(float), the data should be in binary format with floating point precision.
 - When the file format is Binary(double), the data should be in binary format with double point precision.
 - = Filters must be defined with 50 samples per symbol time as the software will take care of resampling and interpolate these values to the resolution required by any specific settings.
 - = Filter coefficients must be in columns.

You can edit the Filter parameters from the table by selecting the values in the dropdown list for the parameter.

Power Ramping Parameters

Power ramping allows you to define the power ramping profile for the signal to be transmitted.

Follow these steps to define power ramping for a signal:

- 1. Select the Power Ramping tab.
- 2. Select a carrier from the table.
- **3.** Select Turn On to include power ramping parameters. (Select Turn On again if you want to exclude power ramping parameters for the carriers. By default, Turn On is set to off.)
- **4.** Set the following power ramping parameters:

Table 36: Power ramping parameters for carriers

Selection	Description	Range, Default value
Ramp		
Function	Select the power ramping function from the following: None, Linear and Cosine.	None
Time (secs)	Enter the duration of ramp.	1 ns to 1 sec, 0.1 usec
Position		
Symbol	Enter the location of the power ramping.	0 to depends on the instrument model and option installed , 0
Level / dB	Enter the level of the power ramping.	-60 dB to +20 dB, 0
Periodically extended power ramping	When selected, the time characteristic of the power ramping is continued periodically until the end of the signal.	Disabled

5. Click Add to add the power ramping parameters to the table and Delete to delete the power ramping parameters from the table. The table contains the Symbol and Level/dB values that you entered.

Carrier Leakage for Single Carrier

Follow these steps to define carrier leakage for a signal:

- 1. Select the I/Q Impairments tab.
- 2. Select a carrier from the table.
- 3. Select Turn On to include carrier leakage (I and Q) impairments to the carrier. (Select Turn On again if you want to exclude carrier leakage (I and Q) impairments. By default, Turn On is set to off.)
- **4.** Set the carrier leakage for I and Q modulator signal in percentage.

Table 37: Carrier leakage parameters for carriers

Selection	Description	Range, Default value
I (%)	Enter the carrier leakage for the I signal.	–50% to +50%, 0%
Q (%)	Enter the carrier leakage for the Q signal.	–50% to +50%, 0%

Quadrature Error for Carriers

Quadrature Error allows you to control the phase angle between the I and Q signals. Follow these steps to define quadrature error for a signal:

- 1. Select the I/Q Impairments tab.
- 2. Select a carrier from the table.
- **3.** Select Turn On to include quadrature error for the carrier. (Select Turn On again if you want to exclude quadrature error. By default, Turn On is set to off.)
- **4.** Quadrature error is defined in degrees. A positive value indicates that the phase angle is greater than 90 degrees. Set the following parameter:

Table 38: Quadrature error parameters for carriers

Selection	Description	Range, Default value
Degrees	Enter the phase angle between the I and Q signals.	–30° to +30°, 0°

I/Q Imbalance for Carriers

I/Q Imbalance allows you to create gain imbalance between I and Q. Follow these steps to define I/Q imbalance for a signal:

- 1. Select the I/Q Impairments tab.
- 2. Select a carrier from the table.
- **3.** Select Turn On to include I/Q imbalance for the carrier. (Select Turn On again if you want to exclude I/Q imbalance. By default, Turn On is set to off.)
- **4.** I/Q imbalance is defined in percentage. Set the following parameter:

Table 39: I/Q imbalance parameters for carriers

Selection	Description	Range, Default value
Percentage	Enter the imbalance between the I and Q signals.	-30% to +30%, 0%

Non-Linear Distortions for Carriers

Non-linear Distortions allow you to simulate the non-linearity of IQ modulators. Follow these steps to define non-linear distortions for a signal:

- **1.** Select the I/Q Impairments tab.
- 2. Select a carrier from the table.
- **3.** Select Turn On to include non-linear distortions for the carrier. (Select Turn On again if you want to exclude non-linear distortions. By default, Turn On is set to off.)
- **4.** Set the following AM/AM and AM/PM parameters:

The variation of the signal amplitude with respect to the original amplitude is called AM/AM conversion.

Table 40: AM/AM parameters for carriers

Selection	Description	Range, Default value
k2 dB	Enter the second order coefficient for the magnitude.	−3 dB to +3 dB, 0 dB
k3 dB	Enter the third order coefficient for the magnitude.	-3 dB to +3 dB, 0 dB

The variation of the phase with respect to the original amplitude is called AM/PM conversion.

Table 41: AM/PM parameters for carriers

Selection	Description	Range, Default value
k2 degrees	Enter the second order coefficient for the phase.	–30° to +30°, 0°
k3 degrees	Enter the third order coefficient for the phase.	−30° to +30°, 0°

See also:

Non-Linear Impairments

Hardware Skew for Carriers

Hardware skew is common for all carriers. The number of channels shown depends on the AWG model being used. Follow these steps to define hardware skew for a signal:

- 1. Select the I/Q Impairments tab.
- 2. Select Turn On to include hardware skew for the carrier. (Select Turn On again if you want to exclude hardware skew. By default, Turn On is set to off.)
- **3.** Set the following parameters:

Table 42: Hardware skew parameter for carriers

Selection	Description	Range, Default value
Channel N (ps)	Enter a value for each channel. Adjusting the skew dynamically updates the dialog box display. The adjustment applies to analog output and marker output.	AWG7000: -100 ps to +100 ps, 0 ps AWG5000: -5 to +5 ns, 0 ns

Amplifier Distortion for Carriers

Amplifier Distortion simulates the non-linearity in the amplifier. You can set the amplifier distortion to Non-Linear, Hardlimiting, or Softlimiting. Hardlimiting and softlimiting amplifiers affect only the amplitude of the output signal. The phase of the output signal is not affected.

Follow these steps to define amplifier distortion for a signal:

- 1. Select the Distortion Addition tab.
- **2.** Select a carrier from the table.
- **3.** Select Turn On to include amplifier distortion for the carrier. (Select Turn On again if you want to exclude amplifier distortion. By default, Turn On is disabled.)
- **4.** Set the following parameters:

Table 43: Amplifier distortion parameters for carriers

Selection	Description	Range, Default value
Amplifier	Select the amplifier distortion from the following: Non-Linear, Hardlimiting, and Softlimiting.	Non-Linear
Operating point	Enter the operating point of the nonlinear amplifier.	0.01 to 1000, 0.01
Limiting Level	Enter the limiting level for the Hardlimiting and Softlimiting amplifiers.	0.1 to 1000, 0.1

The following AM/AM parameters are available for a non-linear amplifier:

Table 44: AM/AM parameters for amplifier distortion

Selection	Description	Range, Default value
k3 (dB)	Enter the third order coefficient for the magnitude.	-3 dB to +3 dB, 0 dB
k5 (dB)	Enter the fifth order coefficient for the magnitude.	-3 dB to +3 dB, 0 dB

The following AM/PM parameters are available for a non-linear amplifier:

Table 45: AM/PM parameters for amplifier distortion

Selection	Description	Range, Default value
k3 (degrees)	Enter the third order coefficient for the phase.	-30° to +30°, 0°
k5 (degrees)	Enter the fifth order coefficient for the phase.	–30° to +30°, 0°

See also:

Amplifier Distortions

Multipath Parameters for Carriers

Follow these steps to set multipath parameters for a signal:

- 1. Select the Multi-Path tab.
- 2. Select a carrier from the table.
- **3.** Select Turn On to define the path for the carrier. (Select Turn On again if you want to exclude multipath parameters. By default, Turn On is disabled..)
- **4.** Set the following parameters:

Table 46: Multipath parameters for carriers

Selection	Description	Range, Default value	
Delay (symbols)	Enter the delay in symbols from the reference path. The delay can be positive or negative. The delay values cannot be repeated.	-80 to +80 symbols, 0 symbols	
Amplitude (dB)	Enter the amplitude in dB from the reference path. The amplitude is always negative.	-60 to 0 dB, 0 dB	
Phase (deg)	Enter the phase in degrees from the reference path. The phase can be positive or negative.	-180 to +180 degrees, 0 degree	

5. Click Add to add the parameters to the table. Select one or more rows and click Delete to delete it from the table.

You can define a maximum of ten multipaths, including the reference path that has the delay, amplitude and phase values set to zero. You can neither delete the reference path with a delay of 0 symbols nor

change the delay value. However, you can change the amplitude and phase values. No two paths can have the same delay value. The table rows are automatically sorted in the ascending order of the delay value. The table contains the Delay, Amplitude, and Phase that you entered.

Depending on the entered delay value, the application might have to recompute the convolution length. This happens if convolution length provided is not enough for the given multipaths. In this case, the following message appears: Convolution length will be adjusted to take care of multipaths. Do you want to adjust? You can choose to adjust or not adjust the convolution length.

Multi-path is created by applying the right algorithm to the baseband I and Q signals. The application generates a new complex isolated pulse by convolving the direct isolated pulse and the channel impulse response (it is a complex impulse response at the baseband level). This implies that to have the right convolution, the total length of the resulting process must be long enough to accommodate the new isolated pulse.

Signal Addition for Carriers

Follow these steps to define signal interference for a signal:

- 1. Select the Interference Addition tab.
- 2. Select Turn On to include signal interference for the carrier. (Select Turn On again if you want to exclude signal interference. By default, Turn On is disabled.)
- **3.** Set the following parameters:

Table 47: Signal addition parameters for carriers

Selection	Description	Default value
Format		
I/Q	Specifies the signal format of the file to be added.	I/Q
IF/RF	Specifies the signal format of the file to be added.	N/A
Add Interference via:		
Software	Specifies that the interference addition will be through software.	Software
Hardware	Specifies that the interference addition will be through hardware.	N/A
Waveform_I	Click the icon next to the Waveform_I field and a list of waveforms appears. Select the I waveform to use.	N/A
Waveform_Q	Click the icon next to the Waveform_Q field and a list of waveforms appears. Select the Q waveform to use.	N/A
Waveform_RF	Click the icon next to the Waveform_RF field and a list of waveforms appears. Select the RF waveform to use.	N/A

When the Signal format is IQ, two interference channels are required, which means that an AWG5000 series with four channels is required. If you do not have a 4-channel AWG, the message appears: AWG has only X channels, cannot send interference data to channel.

When the Signal format is IF/RF, at least one channel should be available for interference, otherwise a message appears: AWG7101, AWG7102 interleave mode cannot be used.

4. If you set Add Interference via to Hardware, the interference should go to Ch2 and you need to connect Ch1 output to Ch2 external signal addition input.

NOTE. The AWG7000 series does not support external signal addition via hardware.

Signal Addition via Software

The following table shows the combinations of the signal you want to generate after compilation and the interference signal that you want to add.

Table 48: Valid combinations of Signal Addition via Software

Compilation format	Add Signal format	Remarks
IQ	IQ	Valid combination.
IF/RF	IF/RF	Valid combination.
IF/RF	IQ	Valid combination. I/Q interference signals will be added before modulation.
IQ	IF/RF	Not a valid combination.

Signal Addition via Hardware

The following table shows the combinations of the signal you want to generate after compilation and the interference signal that you want to add.

Table 49: Valid combinations of Signal Addition via Hardware

Compilation format	Add Signal format	Remarks
IQ	IQ	Valid combination.
IF/RF	IF/RF	Valid combination.
IF/RF	IQ	Not a valid combination.
IQ	IF/RF	Not a valid combination.

Offset for Carriers

Follow these steps to add frequency offsets to a signal:

- 1. Select the Interference Addition tab.
- 2. Select a carrier from the table.
- **3.** Select Turn On to include frequency offsets for the carrier. (Select Turn On again if you want to exclude frequency offsets. By default, Turn On is set to off.)
- **4.** Set the following parameter:

Table 50: Offset parameters for carriers

Selection	Description	Range, Default value
Frequency (Hz)	Enter the frequency offset to add.	AWG7000 options 02/06: -2.9 GHz to +2.9 GHz, 0
		AWG7000 standard option: -1.75 GHz to +1.75 GHz, 0
		AWG5000: -185 MHz to +185 MHz, 0

Sinusoidal for Carriers

Follow these steps to add sinusoidal interference to a signal:

- 1. Select the Interference Addition tab.
- 2. Select a carrier from the table.
- **3.** Select Turn On to include sinusoidal interference for the carrier. (Select Turn On again if you want to exclude sinusoidal interference. By default, Turn On is set to off.)
- **4.** Set the following parameters:

Table 51: Sinusoidal parameters for carriers

Selection	Description	Range, Default value
C/I (dB)	Enter the carrier-to-interference ratio.	-40 dB to 40 dB, 20 dB
Offset from Carrier (Hz)	Enter the offset from the carrier frequency.	AWG7000 options 02/06: -2.9 GHz to +2.9 GHz, 0
		AWG7000 standard option: -1.75 GHz to +1.75 GHz, 0
		AWG5000: -185 MHz to +185 MHz, 0

Conformance Mode

For a selected signal type (IF/RF or IQ), you can generate a signal in either of these modes:

- Conformance Mode
- Custom Mode

In the conformance mode, all packet group settings conform to those defined in the standard. However, you can change some of the parameters for a packet group conforming to the standard.

- 1. In the Select Setup field, select one of the following standard setups or select My Setup to create your own setup:
 - WiMedia Spec Example Packet
 - **=** 53.3, 80, and 106 Mbps Packets
 - 480 Mbps Burst Mode Packets

When you change the setup selection from one standard to another selection, any changes that you may have made are lost unless you save the setup. The following message is displayed: All altered settings will be lost. Do you wish to continue?

However, when you change the setup selection from My Setup to another, changes to My Setup are saved.

- 2. In the Add Number of Packet Groups field, type the number of packet groups to add. The maximum number of packets is 100. Click Add to Table to add the packet group to the table. The newly added packet group can be renamed by clicking the field and typing new text. Use the Up and Down arrow buttons to move the packet group up or down.
 - Select a packet group from the table and click Delete to delete it. The subsequent packet groups in the table are renumbered.
- **3.** Click Marker Mapping... to set the marker (M1 and M2) levels to On (1) or Off (0) for each packet group. Keeping M1 and M2 on indicate when symbols in each frequency hopping band are being output. If the signal format is RF/IF, M1 and M2 of the channel where the RF/IF signal is output will be used. If the signal format is IQ, M1 and M2 of the channel where the I signal is output will be used.

Custom Mode

For a selected signal type (IF/RF or IQ), you can generate a signal in either of these modes:

- Conformance Mode
- Custom Mode

In the custom mode, you can define packet parameters for a packet group. Most packet group settings will be carried from the packet group parameters defined in the conformance mode.

- 1. In the Select Setup field, select one of the following standard setups or select My Setup to create your own setup:
 - WiMedia Spec Example Packet
 - **=** 53.3, 80, and 106 Mbps Packets
 - 480 Mbps Burst Mode Packets

When you change the setup selection from one standard to another selection, any changes that you may have made are lost unless you save the setup. The following message is displayed: All the altered settings will be lost. Do you wish to continue?

However, when you change the setup selection from My Setup to another, changes to My Setup are saved.

2. In the Add Number of Packet Groups field, type the number of packet groups to add. The maximum number of packets is 100. Click Add to Table to add the packet group to the table. The newly added packet group can be renamed by clicking the field and typing new text. The newly added packet group will have one packet (or PPDU).

Select a packet group from the table and click Delete to delete it. The subsequent packet groups in the table are renumbered. Use the Up and Down arrow buttons to move the packet group up or down.

For a selected packet group, the packets or PPDUs are displayed in a table.

3. In the Add Number of Packets field, type the number of packets to add. The maximum number of packets in a packet group is 30. Click Add to Table to add the packets to the table. Use the Up and Down arrow buttons to move the PPDUs up or down.

For a selected packet, the <u>PPDU details</u> are displayed graphically. You can set or edit these values, process a selected packet, or set process preferences.

- **4.** Click Marker Mapping... to set the marker (M1 and M2) levels to On (1) or Off (0) for each packet group. Keeping M1 and M2 on indicate when symbols in each frequency hopping band are being output. If the signal format is RF/IF, M1 and M2 of the channel where the RF/IF signal is output will be used. If the signal format is IQ, M1 and M2 of the channel where the I signal is output will be used.
- 5. Click Restore All to Compliance to restore all the settings as set in the conformance mode.
- **6.** Click Process Preferences to set the processing preferences for the selected packet.

NOTE. When you switch to the Custom mode, settings from the Conformance mode are carried over. If you switch back to Conformance mode, the settings will be the same as when you left the Conformance mode. All the custom mode settings will be lost.

Packet Group Details for Conformance Mode

The packet group details in the conformance mode are as follows:

Table 52: Packet Group Details for Conformance mode

Selection	Description	Range, Default value
Repeat this group (times)	Enter the number of times the group is repeated.	1 to 100, 1
Group start delay (symbols)	Enter the delay in symbols at the start of a group.	0 to 200, 32 symbols

Table 52: Packet Group Details for Conformance mode (cont.)

Selection	Description	Range, Default value
Group end delay (symbols)	Enter the delay in symbols at the end of a group.	0 to 200, 0 symbols
Number of packets in group	Enter the number of packets in a group. The maximum number would be limited by the memory size of AWG that is the number of samples. This will depend on the oversampling, signal format (RF or IQ) and the center frequency.	1 to 30, 1 The maximum number would be limited by the memory size of AWG (the number of samples). The number of samples will depend on the oversampling, signal format (RF or IQ) and the center frequency.
Spacing between packets	Enter the distance between the packets to the specified value in symbols, pMIFS, or pSIFS. The value defines the time between packets.	Standard Mode: 6 to 200, 6 symbols Burst Mode: 6 symbols If Payload length is zero, the Packet separation is fixed to 32 symbols (1 pSIFS).
Payload data source	Enter the source for the packet group from the following selections: WiMedia Spec Example, All 0 (Zeros), All 1 (Ones), PRBS 7, PRBS 9, PRBS 15, PRBS 16, PRBS 20, PRBS 21, PRBS 23, and User Defined.	WiMedia Spec Example
File	Select the payload data file (.txt or .dat) to be used by entering the path or browsing to the file. Enabled when payload data source is set to User Defined.	N/A

Click Tone Nulling to set the amplitudes for the bands in each packet group.

The following conditions must be met for a valid file:

- Any ASCII file, delimited or not, can used as the data source.
- The next bit will be generated by reading the file until a 0, 1, x, or X character is found. 0 and 1 will add the corresponding bit to the sequence; the x and X character will add a new random bit.
- Any other intermediate character will be ignored.
- When the end of the file is reached, the file is read again from the beginning, based on the Record Length.
- The data can be organized in columns or rows.
- Any number of space, tab, or comma characters can be used as a delimiter.
- Empty lines or invalid lines at the beginning and end of the file are ignored.

NOTE. When a packet group is repeated many times, the end delay of one packet group and the start delay of the next packet group are added.

NOTE. If Payload length is zero, the Packet separation is fixed to 32 symbols (1 pSIFS).

Packet Details for Conformance Mode

The packet details in the conformance mode are as follows:

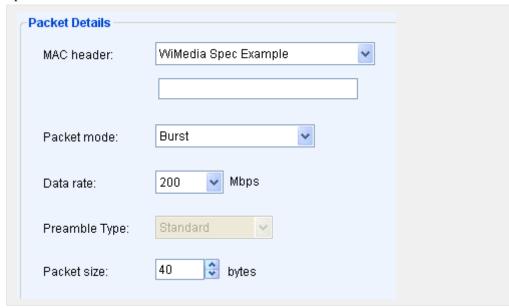


Table 53: Packet Details for Conformance mode

Selection	Description	Default value
MAC header	Select the MAC header type from the following: WiMedia Spec Example, All Zeros, All Ones, PRBS 7, PRBS 9, PRBS 15, PRBS 16, PRBS 20, PRBS 21, PRBS 23, and User Defined Data (in Hex).	The maximum length of the MAC header is 10 bytes. If you enter values less than 10 bytes, the rest will be padded with zeros.
Data (HEX)	Enter the MAC Header data in hexadecimal. Enabled when MAC Header is set to User-Defined Data (in Hex).	Maximum length is 10 bytes.
Packet mode	Select the transmission mode for the packet from the following: Standard, Burst.	The default value depends on the selected setup.
Data rate (Mbps)	Select the data rate for the packet from the following: 53.3, 80, 106.7, 160, 200, 320, 400, and 480 Mbps.	The default value depends on the selected setup.

Table 53: Packet Details for Conformance mode (cont.)

Selection	Description	Default value
Preamble type	Select the preamble type from the following: Standard, Burst. A Standard preamble has 24 symbols and a Burst preamble has 12 symbols.	When the Packet mode is set to Standard, the preamble type is always Standard.
		When the Packet mode is set to Burst and the data rate ≤200 Mbps, the preamble type is always Standard.
		When the Packet mode is set to Burst and the data rate > 200 Mbps, preamble type can be Standard or Burst.
Packet size (bytes)	Enter the size of the packet in bytes.	Standard Mode: 0 to 4095
		Burst Mode: 1 to 4095
		The default values depend on the selected setup.

NOTE. If Payload length is zero, the Packet separation is fixed to 32 symbols (1 pSIFS).

Hopping Details for Conformance Mode

The hopping details in the conformance mode are as follows:

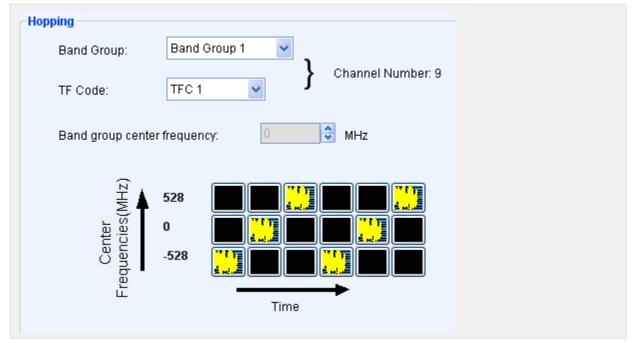
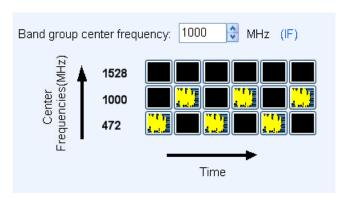



Table 54: Hopping Details for Conformance mode

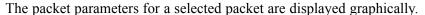
Selection	Description	Range, Default value
Band group	Select a band group from the following: BandGroup 1, BandGroup 2, BandGroup 3, BandGroup 4, BandGroup 5, and BandGroup 6. Sets the band group to use for transmission for the select packet or PPDU.	1 to 6. The default values depend on the quick setup selected. For a newly added packet group, the default value is 1.
TF code	Select the TF code from the following: TFC 1, TFC 2, TFC 3, TFC 4, TFC 5, TFC 6, TFC 7, TFC 8, TFC 9, and TFC 10. Sets the time frequency code to use to define the hopping sequence of the packet group.	1 to 10. The default values depend on the quick setup selected. For a newly added packet group, the default value is 1.
Band group center frequency (MHz)	Displays the center frequency for the selected band group. You can change the center frequency to your requirement.	The center frequency is restricted by the sampling rate set for the instrument and oversampling.

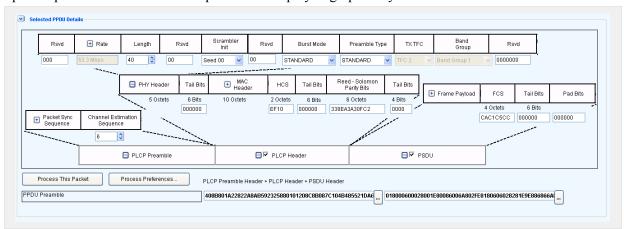
For a selected combination of Band Group and TF Code, the software displays the channel number. For example, for Band Group 4 and TFC 8, the channel number is 96. The hopping pattern is dynamically shown in the Time Vs Centre frequency table. The hopping pattern is as shown:

Packet Group Details for Custom Mode

The packet group settings in the custom mode are as follows:

Table 55: Packet Group Details for Custom Mode


Selection	Description	Range, Default value
Repeat this group (times)	Enter the number of times the group is repeated.	1 to 100
Group start delay (symbols)	Enter the delay in symbols at the start of a group.	0 to 200 symbols, 32
Group end delay (symbols)	Enter the delay in symbols at the end of a group.	0 to 200 symbols, 0
Number of packets in group	Enter the number of packets in a	1 to 100
	group.	The maximum number is limited by the memory size of AWG (the number of samples). The number of samples depends on the oversampling, signal format (RF or IQ) and the center frequency.
Spacing between packets (symbols)	Enter the distance between the	Standard Mode: 6 to 200, 6 symbols.
	packets to the specified value in symbols, pMIFS, or pSIFS. Indicates the time between packets.	Burst Mode: 6 symbols.
Band group	Select a band group from the following: BandGroup 1, BandGroup 2, BandGroup 3, BandGroup 4, BandGroup 5, and BandGroup 6. Sets the band group to use to transmit the selected packet or PPDU.	N/A
TF code	Select the TF code from the following: User defined, TFC 1, TFC 2, TFC 3, TFC 4, TFC 5, TFC 6, TFC 7, TFC 8, TFC 9, and TFC 10. Sets the time frequency code to use to define the hopping sequence of the packet group. For Band Group 5, the selections are TFC 5, TFC 6, TFC 8, and User Defined.	When User defined TFC is selected, you can set your own hopping pattern along with TFC number ranging between 0 to 15. For standard TFCs, TFC 1 to TFC 10, the hopping sequence cannot be changed.
No hopping	Select this option to generate signals for the selected TF code without hopping. However, markers still continue to hop based on the TFC pattern.	Disabled
Band group center frequency (MHz)	Displays the center frequency for the selected band group. You can change the center frequency to your requirement. The changed frequency is updated in the Hopping Pattern dialog box.	N/A


NOTE. When a packet group is repeated many times, the end delay of one packet group and the start delay of the next packet group are added.

NOTE. If you change the TF Code, the change is not reflected in the Packet Sync Sequence (Base Time Domain Sequence and the Cover Sequence).

When the TF Code is set to User Defined, the <u>Hopping Pattern</u> dialog box is displayed. You can define the hopping pattern by clicking on the frequency bands. Assign a TFC number for the pattern and click OK to save the hopping pattern.

Setting PPDU Details

For a packet, you can set the <u>PLCP Preamble</u>, <u>PLCP Header</u> and <u>PSDU</u> parameters. Many parameters have either a dropdown list to select values from, or a text box to enter values (in hexadecimal or binary). Other parameters open the next level of choices or a dialog box.

Click <u>Process Preferences</u> to set your preferences for the selected parameters. When you select a particular parameter in the process preferences, your input for that parameter is used (instead of the computed values).

When you clear a particular parameter in the process preferences, your input for that parameter is ignored. The software will use the computed values.

You can include the PLCP Header and PSDU while processing the packet. By default they are enabled. To exclude the PLCP Header, disable it. The resulting packet after processing will not include PLCP Header information. Similarly, to exclude the PSDU, disable it. The resulting packet after processing will not include PSDU Header information. Both you disable both, then resulting packet will not include PLCP Header and PSDU Header information.

When you click Process This Packet, the PPDU frame is formed according to your preferences. After processing, the packet value is displayed at the lower end of the box.

PLCP Preamble

You can view the PLCP Preamble parameters by clicking the + sign in the PLCP box. The following options can be set the PLCP Preamble parameters:

Table 56: PLCP Preamble options for Custom Mode

Selection	Displays
Packet Sync Sequence	Opens a dialog box with two tabs: Base Time Domain Sequence and Cover Sequence.
Channel Estimation Sequence	Displays the default channel estimation sequence value. Enter a value between 1 and 6.

PLCP Header

You can choose whether to include the PLCP Header in the packet. Select the check box to include the PLCP Header in the packet. Clear the check box to exclude the PLCP Header in the packet.

The following options are available to set the PLCP Header parameters:

Table 57: PLCP Header options for Custom Mode

Selection	Displays	Default value
PHY Header	Displays a set of parameters.	N/A
Tail Bits	Displays the current value of the tail bits. Use the text box to set another value.	000000 bits
MAC Header	Opens a dialog box where you can set there MAC Header from the following: WiMedia Spec Example, All Zeros, All Ones, PRBS 7, PRBS 9, PRBS 15, PRBS 16, PRBS 20, PRBS 21, PRBS 23, and User-Defined Data (in Hex).	The maximum length of the MAC header is 10 bytes. If you enter values less than 10 bytes, the rest will be padded with zeros.
HCS	Displays the current HCS value. HCS is either a calculated value or is determined by the inputs. Use the text box to set another value.	HCS depends on Non-Scrambled MAC Header and PHY Header.
Tail Bits	Displays the current value of the tail bits. Use the text box to set another value.	000000 bits
Reed-Solomon Parity Bits	Displays the current value of the Reed-Solomon Parity bits. Reed-Solomon Parity is either a calculated value or is determined by the inputs. Use the text box to set another value.	Reed-Solomon Parity bits depends on Scrambled MAC Header+ HCS + PHY Header.
Tail Bits	Displays the current value of the tail bits. Use the text box to set another value.	0000 bits

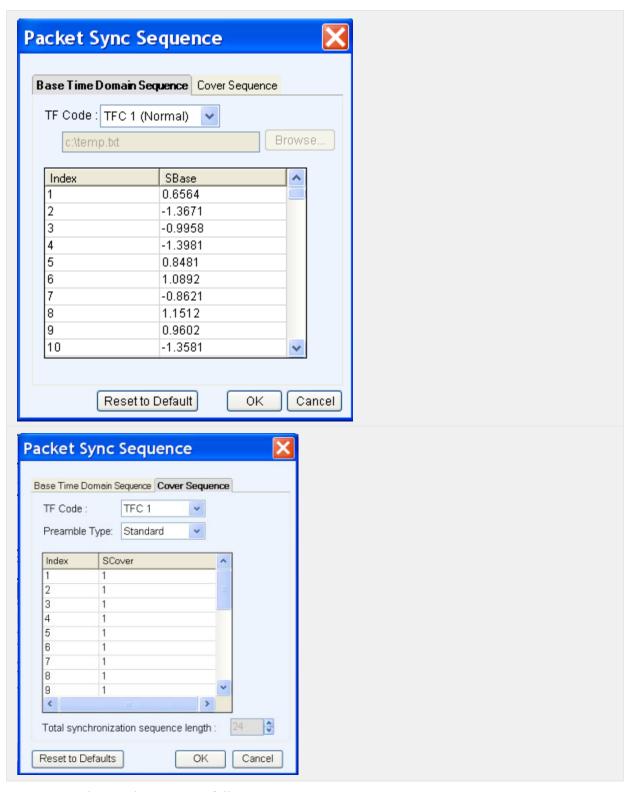
You can set the following parameters in <u>Process Preferences</u> to take your input: Tail Bits, HCS Tail Bits, Reed Solomon Parity Bits, and Tail Bits.

PSDU

You can choose whether to include the PSDU in the packet. Select the check box to include the PLCP Header in the packet. Clear the check box to exclude the PSDU in the packet.

The following options are available to set the PSDU. PSDU is enabled only if the Length field in PHY header is not zero.

Table 58: PSDU options for Custom Mode


Selection	Displays
Frame Payload	Displays the current value of the frame payload (data source). Click within the box to open a dialog box where you can choose the payload data source from the following: WiMedia Spec Example, All Zeros, All Ones, PRBS 7, PRBS 9, PRBS 15, PRBS 16, PRBS 20, PRBS 21, PRBS 23, and User Defined.
File	Select the payload data file (.txt or .dat) to be used by entering the path or browsing to the file. Enabled when payload data source is set to User Defined.
FCS	Displays the current value of the FCS. Use the text box to set another value. FCS is either a calculated value or is determined by the inputs. FCS is calculated on the Payload data.
Tail Bits	Displays the current value of the tail bits. Use the text box to set another value.
Pad Bits	Displays the current value of the pad bits. Use the text box to set another value.

You can set the following parameters in <u>Process Preferences</u> to take your input: FCS, Tail Bits, and Pad Bits.

The length of payload for each packet is taken from the Length field in the PHY header.

Packet Sync Sequence

The Packet Sync Sequence dialog box has two tabs: Base Time Domain Sequence and Cover Sequence. The Packet Sync File consists of the Base time domain sequence. It will consist of 128 values, which will be used as the preamble.

The parameters that can be set are as follows:

Table 59: Packet Sync Sequence parameters for Custom Mode

Selection	Displays	Default value
Base Time Domain Sequence		
TF Code	Select the TF Code from the following selections: User defined, TFC 1 (Normal), TFC 2 (Normal), TFC 3 (Normal), TFC 4 (Normal), TFC 5 (Normal), TFC 6 (Normal), TFC 7 (Normal), TFC 8 (Normal), TFC 9 (Normal), TFC 10 (Normal), TFC 1 (Alternate), TFC 2 (Alternate), TFC 3 (Alternate), TFC 4 (Alternate), TFC 5 (Alternate), TFC 6 (Alternate), and TFC 7 (Alternate).	TFC 1 (Normal)
	If you set the TF code to User Defined, browse and select the file from which to take values.	
Cover Sequence		
TF Code	Select the TF Code from the following selections: User defined, TFC 1, TFC 2, TFC 3, TFC 4, TFC 5, TFC 6, TFC 7, TFC 8, TFC 9, and TFC 10.	TFC 1
	When you set the TF code to User Defined, you can set the total synchronization length.	
Preamble type	Select the preamble type: Standard or Burst. Depending on the preamble type, the index will change to 24 or 12.	Standard
Total synchronization sequence length	Displays the value of the synchronization sequence length. For Standard Preamble, the synchronization length is 24 and for Burst Preamble the synchronization length is 12. If you set the TF Code to User Defined, you can set the synchronization value between 1 and 24.	1 to 24, 1

The Alternate TFC information is available in Appendix D of the latest release of MultiBand OFDM Physical Layer Specification.

NOTE. The number of symbols in the time domain synchronization sequence is equal to the length of the cover sequence.

The Time Domain Sequence table displays the Index and standard SBase values for the selected TF Code. You can double-click on the SBase value in any row and edit it. When the TF Code is set to User Defined, you must specify a file from which to take data.

The following conditions must be met for a valid file:

■ The file name extensions are .txt and .dat. The file consists of the Base Time Domain sequence of 128 values which are used as the preamble.

- Time domain sequence values must be stored in columns. The file with the Base Time Domain sequence should contain 128 data values. If the file contains more than 128 values, the other values will be ignored. If it contains less than 128 values, zeros will be added to make up the 128 values.
- The data should be in floating point precision. Spaces and tabs are ignored. Any other characters, including blank lines, are considered invalid. RFXpress stops reading data when it encounters invalid data.

The Cover Sequence table displays the Index and standard SCover values for the selected TF Code. You can double-click the SCover value in any row and edit it. The total sequence synchronization length is displayed. When the values are taken from an ASCII file, if file contains more than 128 values, the rest are ignored.

Click Reset to Default to restore the SCover and SBase values to their default values.

PHY Header

The PHY Header parameters that can be set are as follows:

Table 60: PHY Header parameters for Custom Mode

Selection	Displays	
Rsvd	Displays the current value in the text box. Use this box to set another value.	
Rate	Displays the data rate of the PHY header. Click Rate to display a dialog box to set the Modulation to DCM or QPSK, Convolution Encoder to 1/3, 1/2, 5/8, or 3/4, Interleaver, Conjugate Symmetry, and Time Spreading.	
Length	Displays the length of the PHY header in bytes between 0 to 4095. Use this field to set another length.	
Rsvd	Displays the current value in the text box. Use this box to set another value.	
Scrambler INIT	Displays the initial value for scrambling. To change this, select from Seed 00, Seed 01, Seed 10, and Seed 11.	
Rsvd	Displays the current value in the text box. Use this box to set another value.	
Burst Mode	Displays the Burst Mode for the next packet. In each packet, the next packet can be configured to: Standard and Burst. The first packet is always Standard.	
Preamble Type	Displays the Preamble Type. To change this, select from Standard and Burst.	
TX TFC	Displays the TX TFC number.	
Band Group	Displays the Band Group.	
Rsvd	Displays the current value in the text box. Use this box to set another value.	

You can set the Rsvd bits in Process Preferences to take your input.

MAC Header

This dialog box is displayed when you click MAC Header (Selected PPDU Details) in the Setup tab (UWB-WiMedia) in the Custom mode. The MAC Header parameters that can be set are as follows:

Table 61: MAC Header parameters for Custom Mode

Selection	Displays	Default value
MAC Header	Displays the default MAC Header. To change this, select from the following: WiMedia Spec Example, All Zeros, All Ones, PRBS 7, PRBS 9, PRBS 15, PRBS 16, PRBS 20, PRBS 21, PRBS 23, and User-Defined Data (in Hex).	The maximum length of the MAC header is 10 bytes. If you enter values less than 10 bytes, the rest will be padded with zeros.
Field	Enter the MAC Header data in hexadecimal. Enabled when MAC Header is set to User-Defined Data (in Hex).	D3C2368C8F360DBBEDBA

Carrier Leakage for UWB-WiMedia

Follow these steps to define carrier leakage for a signal:

- 1. Select the I/Q Impairments tab.
- 2. Select Turn On to include carrier leakage (I and Q) impairments to a packet group. (Select Turn On again if you want to exclude carrier leakage (I and Q) impairments. By default, Turn On is disabled.)
- 3. Set the carrier leakage for I and Q modulator signal in percentage.

Table 62: Carrier leakage parameters for UWB-WiMedia

Selection	Description	Range, Default value
I (%)	Enter the carrier leakage for the I signal.	–50% to +50%, 0%
Q (%)	Enter the carrier leakage for the Q signal.	–50% to +50%, 0%

Quadrature Error for UWB-WiMedia

Quadrature Error allows you to control the phase angle between the I and Q signals. Follow these steps to define quadrature error for a signal:

- 1. Select the I/Q Impairments tab.
- 2. Select Turn On to include quadrature error for a packet group. (Select Turn On again if you want to exclude quadrature error. By default, Turn On is disabled.)
- **3.** Quadrature error is defined in degrees. A positive value indicates that the phase angle is greater than 90 degrees. Set the following parameter:

Table 63: Quadrature error parameters for UWB-WiMedia

Selection	Description	Range, Default value
Degrees	Enter the phase angle between the I and Q signals.	–30° to +30° , 0°

I/Q Imbalance for UWB-WiMedia

I/Q Imbalance allows you to create gain imbalance between I and Q. Follow these steps to define I/Q imbalance for a signal:

- 1. Select the I/Q Impairments tab.
- **2.** Select Turn On to include I/Q imbalance for a packet group. (Select Turn On again if you want to exclude I/Q imbalance. By default, Turn On is disabled.)
- **3.** I/Q imbalance is defined in percentage. Set the following parameter:

Table 64: I/Q imbalance parameters for UWB-WiMedia

Selection	Description	Range, Default value
Percentage	Enter the imbalance between the I and Q signals.	-30% to +30%, 0%

Non-Linear Distortion for UWB-WiMedia

Non-linear Distortions allow you to simulate the non-linearity of IQ modulators. Follow these steps to define non-linear distortions for a signal:

- **1.** Select the I/Q Impairments tab.
- **2.** Select Turn On to include non-linear distortions for a packet group. (Select Turn On again if you want to exclude non-linear distortions. By default, Turn On is disabled.)
- **3.** Set the following AM/AM and AM/PM parameters:

The variation of the signal amplitude with respect to the original amplitude is called AM/AM conversion.

Table 65: AM/AM parameters for UWB-WiMedia

Selection	Description	Range, Default value
k2 dB	Enter the second order coefficient for the magnitude.	-3 dB to +3 dB, 0 dB
k3 dB	Enter the third order coefficient for the magnitude.	-3 dB to +3 dB, 0 dB

The variation of the phase with respect to the original amplitude is called AM/PM conversion.

Table 66: AM/PM parameters for UWB-WiMedia

Selection	Description	Range, Default value	
k2 degrees	Enter the second order coefficient for the phase.	–30° to +30°, 0°	
k3 degrees	Enter the third order coefficient for the phase.	–30° to +30°, 0°	

See also:

Non-Linear Impairments

Hardware Skew for UWB-WiMedia

The number of channels shown depends upon the AWG being used. Follow these steps to define hardware skew for a signal:

- 1. Select the I/Q Impairments tab.
- **2.** Select Turn On to include hardware skew for a packet group. (Select Turn On again if you want to exclude hardware skew. By default, Turn On is disabled.)
- **3.** Set the following parameters:

Table 67: Hardware skew parameters for UWB-WiMedia

Selection	Description	Range, Default value
Channel N (ps)	Enter a value for each channel. Adjusting the skew dynamically updates the dialog box display. The adjustment applies to analog output and marker output.	AWG7000: -100 ps to +100 ps, 0 ps AWG5000: -5 to +5 ns, 0 ns

Amplifier for UWB-WiMedia

Amplifier Distortion simulates the non-linearity in the amplifier. You can set the amplifier distortion to Non-Linear, Hardlimiting, or Softlimiting. Hardlimiting and softlimiting amplifiers affect only the amplitude of the output signal. The phase of the output signal is not affected.

Follow these steps to define amplifier distortion for a signal:

- 1. Select the Distortion Addition tab.
- **2.** Select a carrier from the table.
- **3.** Select Turn On to include amplifier distortion for a packet group. (Select Turn On again if you want to exclude amplifier distortion. By default, Turn On is disabled.)
- **4.** Set the following parameters:

Table 68: Amplifiers parameters for UWB-WiMedia

Selection	Description	Range, Default value
Amplifier	Select the amplifier distortion from the following: Non-Linear, Hardlimiting, and Softlimiting.	Non-Linear
Operating point	Enter the operating point of the nonlinear amplifier.	0.01 to 1000, 0.01
Limiting Level	Enter the limiting level for the Hardlimiting and Softlimiting amplifiers.	0.1 to 1000, 0.1

The following AM/AM parameters are available for a non-linear amplifier:

Table 69: AM/AM parameters for UWB-WiMedia

Selection	Description	Range, Default value
k3 (dB)	Enter the third order coefficient for the magnitude.	-3 dB to +3 dB, 0 dB
k5 (dB)	Enter the fifth order coefficient for the magnitude.	-3 dB to +3 dB, 0 dB

The following AM/PM parameters are available for a non-linear amplifier:

Table 70: AM/PM parameters for UWB-WiMedia

Selection	Description	Range, Default value
k3 (degrees)	Enter the third order coefficient for the phase.	–30° to +30°, 0°
k5 (degrees)	Enter the fifth order coefficient for the phase.	–30° to +30°, 0°

See also:

Amplifier Distortions

Multipath Parameters for UWB-WiMedia

Follow these steps to set multipath parameters for a signal:

- 1. Select the Multi-Path tab.
- 2. Select Turn On to define the path. (Select Turn On again if you want to exclude multipath parameters. By default, Turn On is disabled.)
- **3.** Set the following parameters:

Table 71: Multipath parameters for UWB-WiMedia

Selection	Description	Range, Default value
Delay (symbols)	Enter the delay in symbols from the reference path. The delay can be positive or negative. The delay values cannot be repeated.	-2 to +2 symbols, 0 symbols
Amplitude (dB)	Enter the amplitude in dB from the reference path. The amplitude is always negative.	-60 to 0 dB, 0dB
Phase (deg)	Enter the phase in degrees from the reference path. The phase can be positive or negative.	-180 to +180 degrees, 0 degree

4. Click Add to add the parameters to the table. Select a row and click Delete to delete it from the table.

You can define a maximum of ten multipaths, including the reference path that has the delay, amplitude and phase values set to zero. You can neither delete the reference path with a delay of 0 symbols nor change the delay value. However, you can change the amplitude and phase values. No two paths can have the same delay value. The table rows are automatically sorted in the ascending order of the delay value. The table contains the Delay, Amplitude, and Phase that you entered.

Depending on the entered delay value, the application might have to recompute the convolution length. This happens if convolution length provided is not enough for the given multipaths. In this case, the following message appears: Convolution length will be adjusted to take care of multipaths. Do you want to adjust? You can choose to adjust or not adjust the convolution length.

Multi-path is created by applying the right algorithm to the baseband I and Q signals. The application generates a new complex isolated pulse by convolving the direct isolated pulse and the channel impulse response (it is a complex impulse response at the baseband level). This implies that to have the right convolution, the total length of the resulting process must be long enough to accommodate the new isolated pulse.

Signal Addition for UWB-WiMedia

Follow these steps to define signal interference for a signal:

- 1. Select the Interference Addition tab.
- 2. Select Turn On to include signal interference for a packet group. (Select Turn On again if you want to exclude signal interference. By default, Turn On is disabled.)
- **3.** Set the following parameters:

Table 72: Signal addition parameters for UWB-WiMedia

Description	Default value
Specifies the signal format of the file to be added.	I/Q
Specifies the signal format of the file to be added.	N/A
Specifies that the interference addition will be through software.	Software
Specifies that the interference addition will be through hardware.	N/A
Click the icon next to the Waveform_I field and a list of waveforms appears. Select the I waveform to use.	N/A
Click the icon next to the Waveform_Q field and a list of waveforms appears. Select the Q waveform to use.	N/A
Click the icon next to the Waveform_RF field and a list of waveforms appears. Select the RF waveform to use.	N/A
	Specifies the signal format of the file to be added. Specifies the signal format of the file to be added. Specifies that the interference addition will be through software. Specifies that the interference addition will be through hardware. Click the icon next to the Waveform_I field and a list of waveforms appears. Select the I waveform to use. Click the icon next to the Waveform_Q field and a list of waveforms appears. Select the Q waveform to use. Click the icon next to the Waveform_RF field and a list of

When the Signal format is IQ, two interference channels are required, which means that an AWG5000 series with four channels is required. If you do not have a 4-channel AWG, then the warning message appears: AWG has only X channels, cannot send interference data to channel.

When the Signal format is IF/RF, at least one channel should be available for interference, otherwise a message appears: AWG7101, AWG7102 interleave mode cannot be used.

4. If you set Add Interference via to Hardware, the interference should go to Ch2 and you need to connect Ch1 output to Ch2 external signal addition input.

NOTE. The AWG7000 series does not support external signal addition via hardware.

Signal Addition via Software

The following table shows the combinations of the signal you want to generate after compilation and the interference signal that you want to add.

Table 73: Valid combinations of signal addition via software for UWB-WiMedia

Compilation format	Add Signal format	Remarks
IQ	IQ	Valid combination.
IF/RF	IF/RF	Valid combination.
IF/RF	IQ	Valid combination. I/Q interference signals will be added before modulation.
IQ	IF/RF	Not a valid combination.

Signal Addition via Hardware

The following table shows the combinations of the signal you want to generate after compilation and the interference signal that you want to add.

Table 74: Valid combinations of signal addition via hardware for UWB-WiMedia

Compilation format	Add Signal format	Remarks
IQ	IQ	Valid combination.
IF/RF	IF/RF	Valid combination.
IF/RF	IQ	Not a valid combination.
IQ	IF/RF	Not a valid combination.

Offset for UWB-WiMedia

Follow these steps to add frequency offsets to a signal:

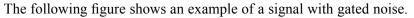
- 1. Select the Interference Addition tab.
- 2. Select Turn On to include frequency offsets for a packet group. (Select Turn On again if you want to exclude frequency offsets. By default, Turn On is disabled.)
- **3.** Set the following parameter:

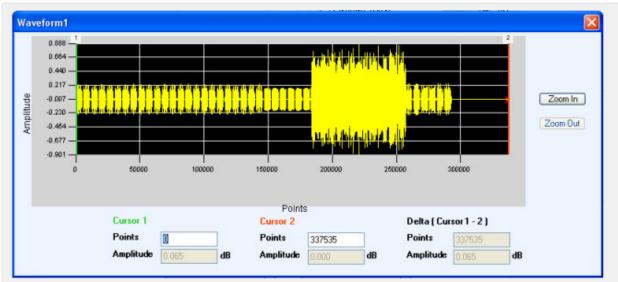
Table 75: Offset parameters for UWB-WiMedia

Selection	Description	Default value
Frequency (Hz)	Enter the frequency offset to add.	AWG7000 options 02/06: -2.9 GHz to +2.9 GHz, 0
		AWG7000 standard option: –1.75 GHz to +1.75 GHz, 0
		AWG5000: -185 MHz to +185 MHz, 0

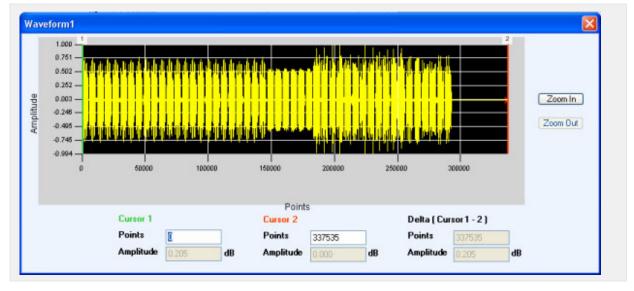
Gated Noise for UWB-WiMedia

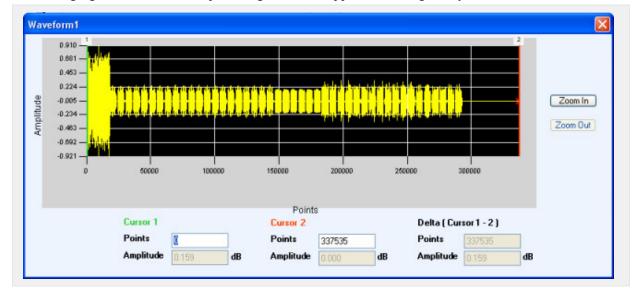
You can apply gated noise to either certain segments of the packets or through a range of symbols. The packet segments that you can apply noise to are: Preamble, PLCP Header, or the Payload. You can define a range of symbols to which to apply noise.


A negative signal to noise value indicates that the noise added will be greater than the signal amplitude. Conversely, a positive signal to noise value indicates that the noise added will be smaller than the signal amplitude.


Follow these steps to add gated noise to a signal:

- 1. Select the Interference Addition tab.
- **2.** Select Turn On to include gated noise for a packet group. Select Turn On again to exclude gated noise. By default, Turn On is disabled.
- **3.** Set the following parameters:


Table 76: Gated noise parameters for UWB-WiMedia


Selection	Description	Range, Default value
Packets	Select Packets to define the packet parameters.	Enabled
Preamble (S/N) (dB)	Enable the option and enter the signal to noise ratio for the preamble.	-40 to +20 dB, 0
PLCP Header (S/N) (dB)	Enable the option and enter the signal to noise ratio for the PLCP header.	-40 to +20 dB, 0
Payload (S/N) (dB)	Enable the option and enter the signal to noise ratio for the payload.	-40 to +20 dB, 0
Symbols	Select Symbols to define the symbol parameters.	Disabled
Packet range	Enter the range of packets from the	From: 0 to 59039, 0
	start packet through the end packet.	To: 0 to 59039, 0
S/N (dB)	Enter the signal to noise ratio.	-40 to +20 dB, 0

The following figure shows an example of a signal without gated noise.

The following figure shows an example of a gated noise applied to a range of symbols.

Sinusoidal for UWB-WiMedia

Follow these steps to add sinusoidal interference to a signal:

- 1. Select the Interference Addition tab.
- 2. Select Turn On to include sinusoidal interference for a packet group. (Select Turn On again if you want to exclude sinusoidal interference. By default, Turn On is set to off.)
- **3.** Set the following parameters:

Table 77: Sinusoidal parameters for UWB-WiMedia

Selection	Description	Default value
C/I (dB)	Enter the carrier-to-interference ratio.	-60 dB to 60 dB
Offset from Carrier (Hz)	Enter the offset frequency of the interferer sample.	AWG7000 options 02/06: -2.9 GHz to +2.9 GHz, 0
		AWG7000 standard option: -1.75 GHz to +1.75 GHz, 0
		AWG5000: -185 MHz to +185 MHz, 0

Real-World Signal Interference

Follow these steps to add real-world interference to a signal:

- 1. Select the Interference Addition tab.
- 2. Select Turn On to include real-world interference for a packet group. (Select Turn On again if you want to exclude real-world interference. By default, Turn On is set to off.)
- **3.** Set the following parameters:

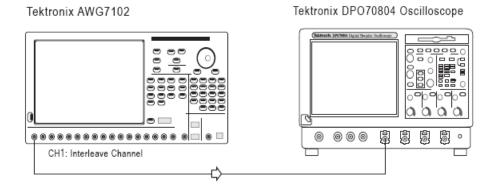
Table 78: Real world signal parameters for UWB-WiMedia

Selection	Description	Range, Default value
Add WiMax signal	Enable this option to add WiMax interference to the UWB signal.	Disabled
Frequency (Hz)	Enter the frequency of the WiMax signal to add.	Depends on the instrument bandwidth, 2.5 GHz
Amplitude (dB)	Enter the amplitude of the WiMax signal to add.	-60 dB to + 60 dB, 0 dB
Add WiFi signal (MIMO)	Enable this option to add WiFi (MIMO) interference to the UWB signal.	Disabled
Frequency (Hz)	Enter the frequency of the WiFi (MIMO) signal to add.	Depends on the instrument bandwidth, 2.4 GHz
Amplitude (dB)	Enter the amplitude of the WiFi (MIMO) signal to add.	-60 dB to + 60 dB, 0 dB
Add WiFi signal (802.11a)		Disabled
Frequency (Hz)	Enter the frequency of the WiFi (802.11a) signal to add.	Depends on the instrument bandwidth, 2.4 GHz
Amplitude (dB)	Enter the frequency of the WiFi (802.11a) signal to add.	-60 dB to + 60 dB, 0 dB
Add radar signal	Enable this option to add radar interference to the UWB signal.	Disabled
Frequency (Hz)	Enter the frequency of the radar signal to add.	Depends on the instrument bandwidth, 1 GHz
Amplitude (dB)	Enter the amplitude of the radar signal to add.	-60 dB to + 60 dB, 0 dB

The radar signal that the application adds has the following properties:

■ Modulation: LFM (Linear Frequency Modulated) Pulse.

■ Pulse width: 5 usec


■ Frequency sweep: 20 MHz

■ PRI: 800 usec

Using Calibration for IF/RF Signals

Calibration is available only when the software is running on an AWG5000 or AWG7000 series.

For IF/RF signals connect the arbitrary waveform generator and oscilloscope as follows:

Creating Correction Files

- 1. Select Calibration from the toolbar.
- **2.** Select the Signal Type.
- **3.** From the list of instruments, highlight an oscilloscope and click Connect.
- **4.** Set the Calibration parameters. The calibration parameters are: Sampling Frequency, Interleave, Zeroing, Calibration Reminder, Average, Generator Center Frequency, Band Group Center Frequency, and Sideband. You can leave these parameters with their default values or set them as you like.

However, you must set the following parameters: Band Group, Bands, and Channels to which correction files apply.

NOTE. Interleave and Zeroing are available on the AWG7000 series with Option 06.

The following table lists the Band Groups and their center frequencies for IF and RF signals.

Table 79: Band groups and center frequencies for If and RF signals

Band Group	RF Center Frequency	IF Center Frequency	
1	3960 MHz	1000 MHz	
2	5544 MHz	1000 MHz	
3	N/A	1000 MHz	
4	N/A	1000 MHz	
5	N/A	1000 MHz	

Table 79: Band groups and center frequencies for If and RF signals (cont.)

Band Group	RF Center Frequency	IF Center Frequency
6	N/A	1000 MHz
User Defined	Band Group Center Frequency is enabled when user-defined band group is selected. You can enter any frequency value within the range of 500 KHz to 10 GHz.	Band Group Center Frequency is enabled when user-defined band group is selected. You can enter any frequency value within the range of 1 GHz to 20 GHz.

NOTE. BandGroup3 to BandGroup6 are not available in RF due to the limitation of the AWG7000 bandwidth.

- **5.** For each channel, set the path and file name of the correction file. The correction files will be created in the specified location.
- **6.** Click Calibrate. A status message displays the status of processing. The AWG creates a signal averaged (the number of iterations) as specified by Average field and sends it to the oscilloscope.

The reference signal is generated using the oscilloscope parameters.

NOTE. The difference between the generated signal and the reference signal is calculated for each iteration.

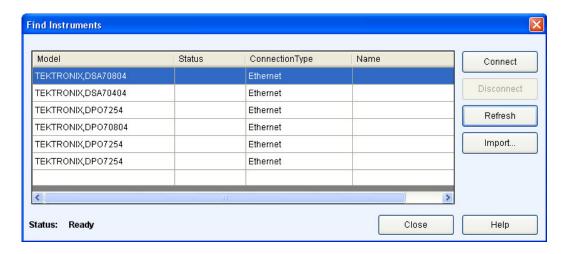
7. The corrections files (.rfc) created contain both Magnitude and Phase information specific for the selected channel, band group and bands.

Applying Correction Files During Compilation

To apply the correction files creation by calibration, follow these steps:

- 1. Click Compile > Compile Settings from the toolbar.
- 2. In the <u>Compile Settings</u> dialog box, select the When compiling apply correction files to these channels option and select the channels depending on the AWG model.
- **3.** Click Compile. The correction files are applied while compiling the signal. The signal is displayed in the Waveform List.

Controlling an Instrument


RFXpress can be used to control a connected instrument (for example a Tektronix oscilloscope or an Agilent Performance Signal Generator E8267D with Option 015) in many ways: You can:

- Install RFXpress on an AWG5000/AWG7000 series instrument. RFXpress can directly send and receive data from the AWG.
- Install an offline version of RFXpress on a PC with an offline version of the AWG software. In this case, RFXpress can detect the presence of the AWG and send data to it. This data can be opened and viewed in the AWG.

■ Install RFXpress on a PC and use it to control an Agilent E8267D and any Tektronix oscilloscope. The software uses TekVisa ver.3.0.2.33 to interface with the Agilent E8267D and the oscilloscope. The instruments can be connected using LAN or GPIB.

Follow these steps to find other instruments connected to the instrument on which RFXpress is running:

1. Click Find Instruments. The following dialog box opens.

The table lists the instruments found along with the name of the instrument, model, status (connected or not), and the connection type (Ethernet or GPIB).

2. Select an instrument from the table. Use the following buttons to:

Table 80: Find instruments options and their description

Button	Description	
Connect	Allows you to Connect to the instrument selected in the table. Enabled is default if an instrument in highlighted in the table; disabled if no instrument is highlighted.	
Disconnect	Allows you to Disconnect the connected instrument. Enabled only when an instrument is connected.	
Refresh	Refreshes the list of instruments.	
Import	Opens the Import from Tektronix Oscilloscope dialog box.	

3. Click Connect to connect to the selected instrument.

Controlling an Arbitrary Waveform Generator (AWG)

Waveform transfer and control of the AWG5000 and AWG7000 series can be performed directly from RFXpress. You can run the software on an AWG5000 or AWG7000 series arbitrary waveform generator and control it.

1. Select Window > Instrument Control.

2. From the AWG tab, you can modify the values of the following AWG parameters:

Table 81: AWG parameters

Selection	Description	Default value
Sampling Rate	Displays the sampling rate of the arbitrary waveform generator.	The default is as set in the AWG.
Interleave	Sets the interleave option to On or Off.	Off
Zeroing	Enabled only when Interleave is set to On.	Cleared or unchecked.
Channel (On/Off)	Select the channel or channels to receive the output from these channels.	This depends on the number of channels present on the AWG.
Amplitude (Vpp)	Displays the amplitude of the selected channel. Change the amplitude in this field to change the amplitude on the channel.	The default is as set in the AWG.
Offset (V)	Displays the amplitude offset of the selected channel. Change the amplitude in this field to change the amplitude offset on the channel.	The default is as set in the AWG.
Waveform button	Opens the Waveform List and allows you to select the waveform to be output.	Cleared or unchecked.
Waveform	Displays the selected waveform name. You can drag and drop the waveform from the Waveform List. When you drag and drop a waveform, the sampling rate is automatically set.	N/A

The following button is available:

Table 82: AWG options

Button	Description
Advanced	Opens a dialog box where you can set the advanced options.

3. When you click Advanced, the following options are available for each channel:

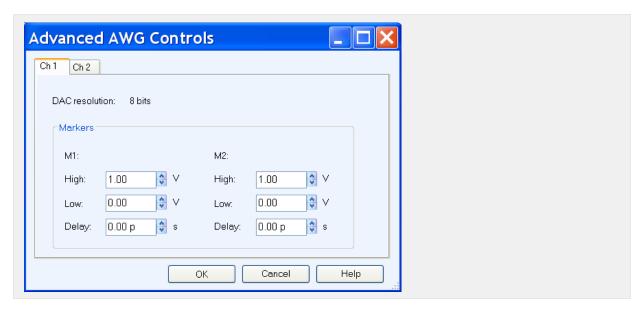


Table 83: Advanced AWG parameters

Selection	Description
DAC Resolution	
8 bits	Sets the DAC resolution to 8 bits.
10 bits	Sets the DAC resolution to 10 bits. When the DAC resolution is set to 10 bits, the marker options are not available.
Markers (M1 and M2)	
High (V)	Enter the high value for the markers.
Low (V)	Enter the low value for the markers.
Delay (s)	Enter the maker delay.

NOTE. When connected to the AWG5000 series instruments, DAC resolution is fixed to 14 bits and cannot be changed.

Connecting to and Controlling an Oscilloscope

You can connect to and control a Tektronix oscilloscope using RFXpress.

- 1. Select Window > Instrument Control.
- **2.** A table lists the connected oscilloscopes. From the Oscilloscope tab, you can modify the values of the following oscilloscope parameters:

NOTE. Ensure that the Sampling mode on the oscilloscope is set to Real Time. If the Sampling mode is set to Interpolation (either automatically or manually), the parameter values in RFXpress Instrument control and the oscilloscope may not match.

Table 84: Oscilloscope parameters

Selection	Description	
Vertical settings		
Channel	Displays the channel to which to output the signal. To change this setting, select another channel.	
Scale (V)	Displays the vertical scale set in the oscilloscope for the selected channel. Change the value in this field to change the vertical scale on the connected instrument.	
Horizontal settings		
Scale (s)	Displays the horizontal scale set in the oscilloscope. Change the value in this field to change the horizontal scale on the connected instrument.	
Record length	Displays the record length set in the oscilloscope. Change the value in this field to change the record length on the connected instrument.	
Sampling rate (Samples/sec)	Displays the sampling rate set in the oscilloscope. Change the value in this field to change the sampling rate on the connected instrument.	
Acquisition		
Run	Starts the acquisition of data in on the oscilloscope.	
Stop	Stops the acquisition of data on the oscilloscope.	
Single	Sets the oscilloscope to acquire one full record length and then stop.	

The following buttons are available in this tab:

Table 85: Oscilloscope options

Button	Description
Autoset	Performs Autoset on the oscilloscope.
Refresh Settings	Refreshes the display with the current instrument settings.
Refresh List	Refreshes the connection status of the instruments.
Find Instruments	Finds instruments on the network.

Connecting to and Controlling a Performance Signal Generator (PSG)

You can connect to and control an Agilent performance signal generator (E8267D with Option 015) using RFXpress.

- 1. Select Window > Instrument Control.
- **2.** In the PSG tab, the following parameters as set on PSG are displayed. However, you can modify the values of the PSG parameters:

Table 86: PSG parameters

Selection	Description	
Signal		
Frequency (GHz)	Displays the frequency of the signal. Change the frequency in this field to change the frequency on the connected instrument.	
Frequency offset (Hz)	Displays the frequency offset of the signal. Change the frequency offset in this field to change the frequency offset on the connected instrument.	
Amplitude (dBm)	Displays the amplitude of the signal. Change the amplitude in this field to change the amplitude on the connected instrument.	
Amplitude offset (dB)	Displays the amplitude offset of the signal. Change the amplitude offset in this field to change the amplitude offset on the connected instrument.	
Output		
RF	Select On to set the output format of the signal to RF.	
Mod	Select On to set the output format of the signal to MOD.	

The following buttons are available:

Table 87: PSG options

Button	Description	
Advanced	Opens a dialog box where you can set the advanced options.	
Refresh	Refreshes the display with the current instrument settings.	
Test Connection	Checks the state of the connection and displays the status.	
Find Instruments	Finds instruments on the network.	

3. When you click Advanced, the following options are available:

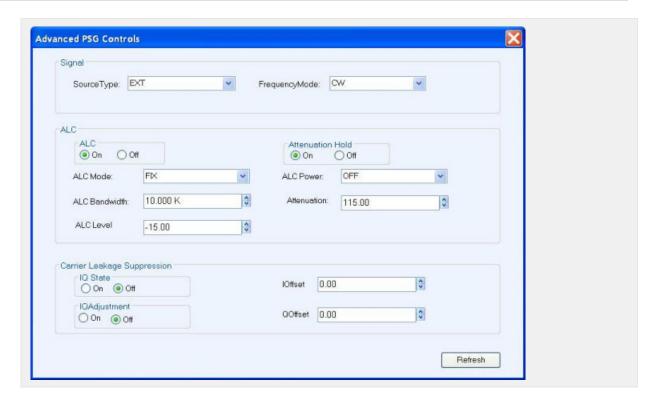


Table 88: Advanced PSG parameters

Selection	Description
Signal	
Source Type	Displays the source type of the signal. To change this select one of the following: EXT, INT, BBG1, EXT600, and OFF.
Frequency Mode	Displays the frequency mode of the signal. To change this, select on of the following: FIX, CW, SWE, and LIST.
ALC	
ALC: On, Off	Sets ALC to On or Off.
ALC Mode	Displays the ALC mode of the signal. To change this, select on of the following: FIX, SWE, and LIST.
ALC Bandwidth (Hz)	Displays the ALC bandwidth.
ALC Level (dBm) (Volts)	Displays the ALC level.
ALC Power	Displays the ALC power of the signal. To change this, select on of the following: ON, OFF, and ONCE.
Attenuation (dB)	Displays the attenuation.
Carrier Leakage Suppression	
IQ State	When set to On, suppresses the IQ State.
IQ Adjustment	When set to On, suppresses the IQ Adjustment.
I Offset (volts)	Offsets the I signal.
Q Offset (volts)	Offsets the Q signal.

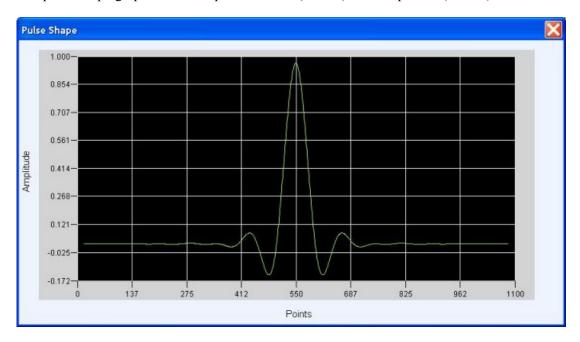
Graphing Zooming Graphs

You must click Refresh to update any new settings on the performance signal generator.

Zooming Graphs

You can zoom in or zoom out on a graph. You can zoom in on a plot by selecting an area of interest. RFXpress supports four levels of zoom.

The following graphs provide zoom buttons that help you zoom the plot:


- Spectrum
- \blacksquare I(t), Q(t)

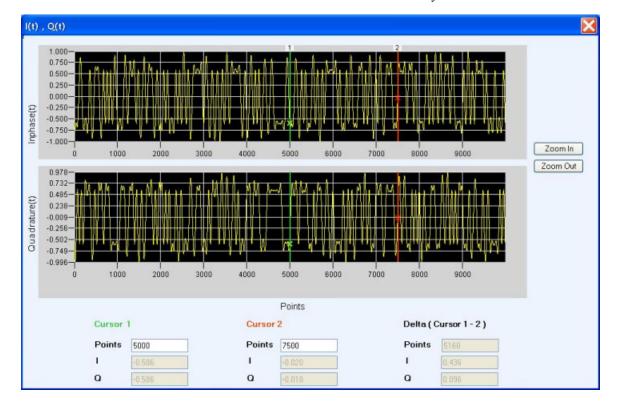
See also:

Graph

Pulse Shape

The pulse shape graph shows the plot of Points (X-axis) and Amplitude (Y-axis).

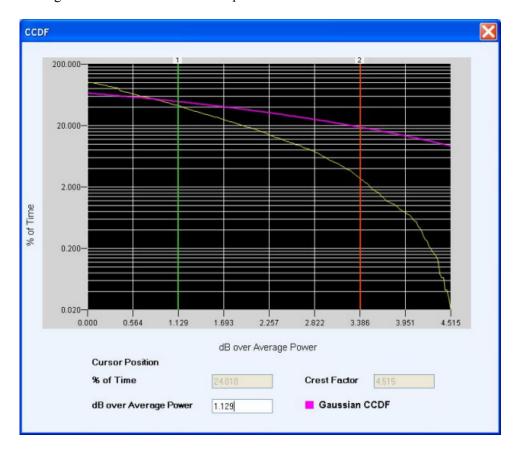
Graphing I(t), Q(t)


I(t), **Q(t)**

The I (t), Q(t) graph shows two plots: Points (X-axis) against Inphase(t) (Y-axis), and Points (X-axis) against Quadrature(t) (Y-axis).

The cursor readouts show the X and Y values and delta of the cursor positions. Moving the cursors causes the cursor readouts and the delta values to be updated. You can also specify the points values in the fields to position the cursors.

The following controls are available:


- Zoom In: Click Zoom In. Select an area on the plot to zoom in on. You can use the horizontal scroll bar to scroll through the plot while in the zoom mode.
- Zoom Out: Click Zoom Out to zoom out in the same manner that you zoomed in.

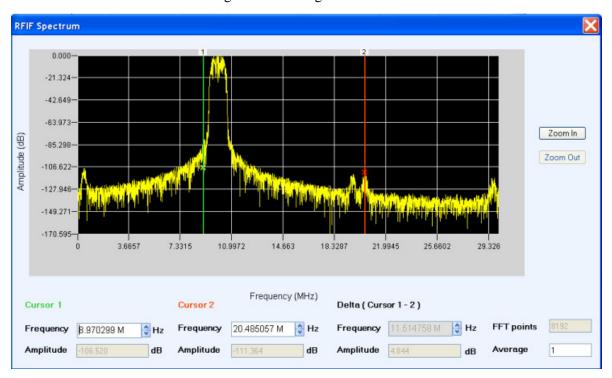
Graphing CCDF Plot

CCDF Plot

The CCDF graph shows the plot of dB over Average Power (X-axis) and % of Time (Y-axis). The readouts show the % of Time, the dB over Average Power, and the Crest Factor. You can specify the dB over Average Power value in the field to position the cursor.

Graphing Spectrum

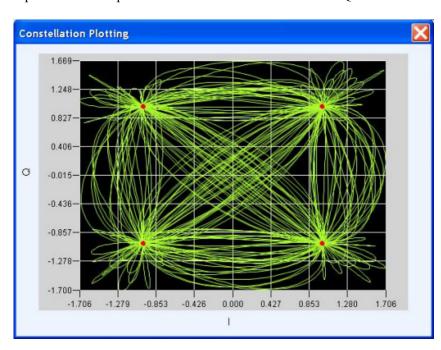
Spectrum


The Spectrum graph shows a plot of Frequency (MHz) on the X-axis and Amplitude (dB) on the Y-axis. The Cursor 1 and Cursor 2 positions, and the Delta (between the cursor positions) are displayed. Moving the cursors causes the cursor readouts and the delta values to be updated. You can also specify the frequency values in the fields to position the cursors. The number of FFT points (8192) and average points are also shown.

The following controls are available:

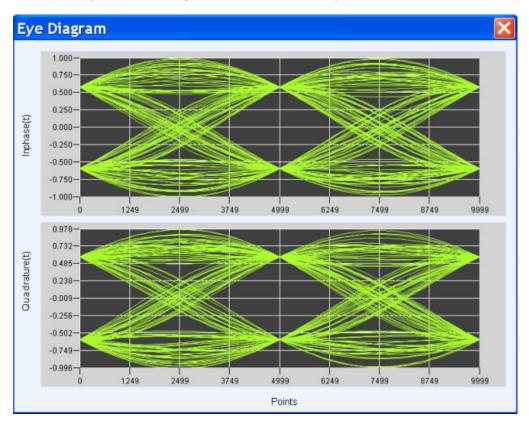
- Zoom In: Click Zoom In. Select an area on the plot to zoom in on. You can use the horizontal scroll bar to scroll through the plot while in the zoom mode.
- Zoom Out: Click Zoom Out to zoom out in the same manner that you zoomed in.

Averaging


If the number of sample points is high, you can use the Average field to enter a value and average the FFT data. The value entered in the average field can range from 1 to 1024.

Graphing Constellation Plotting

Constellation Plotting


The constellation graph shows the plots of Points (X-axis) against I and Q (Y-axis). It is a graphical representation of permissible modulation states at the I/Q level.

Reference Eye Diagram

Eye Diagram

Error Messages for Generic Signal

Error message	Description Possible solution	
Waveform Errors		
Error generating waveform.	An exception occurred while running the application.	Restart the application.
Waveform does not exist.	Operation in an illegal state.	Delete all the waveforms.
Memory failed.	Operation in an illegal state.	Try one of the following:
	Memory overflow.	Restart the application.
		Free space on the hard disk.
Data not found.	Accessing data beyond range.	Delete all the waveforms.
Invalid size.	The waveform length is beyond the range.	Check the range help page for valid range.
Maximum number of waveforms: 100.	The limit of 100 is reached on completing the selected operation.	Delete waveforms which are not in use.

Error message	Description	Possible solution
Invalid sampling rate.	The clock rate from the file is incorrect.	Check the format of the file being imported.
Unable to access data.	The application is the invalid state.	Restart the application.
Generic Signal Errors		
Symbol Map table cannot be empty.	The table should have valid entries.	Check the parameters in the Modulation Symbol map table.
Maximum number of carriers: 512.	The maximum carriers that can be generated by the application is reached.	Delete the carriers that are not in use.
No carrier available.	At least one carrier is required to	Try one of the following:
	produce data.	Add at least one carrier to the table.
		At least one carrier should have the State turned 'ON'
User defined file name cannot be empty.	Valid files need to be present.	Valid files need to be present.
File does not exist.	The file does cannot be found. The file may be deleted.	Select existing files.
The interference input signal waveforms cannot be the same as the	The waveform will be overwritten.	Try one of the following:
compile waveforms.		Select a different name for the compilation waveform.
		Rename the waveform in the list and select the waveform again.
Base data file not found.	The file was deleted after updating the setup.	Select existing base data files.
Filter file not found.	The user-defined filter file was not selected.	Select a user-defined filter file.
Modulation Symbol file not found.	The user-defined symbol file was not found.	Select a user-defined symbol file.
Modulation Sample file not found.	The user-defined sample file was not found.	Select a user-defined sample file.
Maximum total symbols: 512.	The total number of symbols of 512 is exceeded.	N/A
Error on parsing PRBS polynomial.	The PRBS polynomial syntax is incorrect.	Enter the correct PRBS polynomial.
Symbol rate should be less than carrier frequency.	The specified symbol rate is greater than the carrier frequency.	Enter a symbol rate that is less than the carrier frequency.

Error Messages for UWB-WiMedia

Error message	Description	Possible solution
Length of arrays does not match the size in RFC file.	The correction file may be corrupt.	Calibrate again.
Select at least one band for calibration.	The band data is required for calibration.	Select at least one band.
Enter valid correction file path in Ch N tab.	The path does not exist.	Select an existing file path.
Select at least one channel to apply corrections.	Choose the channel to which the calibration should be applied.	N/A
Select both the channels to apply corrections.	IQ Signal format requires two channels for signal generation.	Select appropriate I and Q channels.
Initialization for the test signal generation is failed.	Invalid parameters were used.	Rerun the calibration after closing and opening the window.
Error in generating Test Signal.	The test signal file was corrupt.	Restart the application.
Failed to set calibration signal parameters.	Invalid parameters were used.	Rerun the calibration after closing and opening the window.
Initialization for the reference signal generation has failed.	Invalid parameters were used.	Rerun the calibration after closing and opening the window.
Error in generating Reference Signal.	The reference signal file was corrupted.	Restart the application.
Error in setting Reference Signal.	Invalid parameters were used.	Rerun the calibration after closing and opening the window.
Failed to set oscilloscope parameters.	The oscilloscope communication was	Check the oscilloscope connections.
Error in acquiring signal from oscilloscope.	not successful.	Try one of the following:
Error in setting oscilloscope signal.	-	Refresh the list in Find Instruments window.
Error in averaging the signal.		Refresh the TekVISA instrument manager.
		 Close the application. Restart TekVISA. Restart the application.
		Restart the oscilloscope.
Correction file does not exist. Please	Correction files need to be given if	Try one of the following:
calibrate to generate correction files.	correction is chosen.	Select existing correction files to apply for correction.
		Choose not to give correction files.
Invalid correction file.	Correction file format is incorrect.	Apply valid correction files.

Error message	Description	Possible solution
Correction file not found.	The correction file was deleted after updating the values in window.	Select existing correction files.
Compilation aborted. One or more user defined file(s) does not exist.	The user-defined payload data source file in the conformance mode is incorrect.	Select the correct payload data source data file.
Payload file does not exist.	Payload data source user defined file custom mode is incorrect.	Select the correct payload data source data file.
No packets present in the current configuration.	At least one packet is necessary for generating data.	Select at least one valid packet.
Compilation aborted.	The correction files do not match with the selected channel.	Calibrate and choose appropriate correct correction files.

Miscellaneous Error Messages

Error message	Description	Possible solution	
Compile failed.	Invalid parameters were found during compilation.	Check compilation parameters before compiling.	
		Restart the application.	
Maximum number of averages: 1024.	The total number of averages exceeds 1024 in the spectrum plot.	N/A	
Invalid file extension.	This file type is not supported by the application for import.	Select the right format supported by the application.	
Invalid file type. Data can not be	The file contains wrong data.	Use a valid file.	
imported.	The data (in the file) does not match the file type specified during file import.	Specify the type of data in the file correctly.	
Unable to retrieve the file size.	The file size could not be computed based on the data in the file.	Use a valid file.	
Unable to create buffer for the imported file.	The software is unable to allocate the required memory for importing the file.	Release memory by deleting some waveforms in the waveform list.	
Unable to load the setup file.	The selected setup file cannot be	Use a valid file.	
Application not available.	loaded because the application (UWB-WiMedia) is not available.	Purchase the UWB-WiMedia application.	
Error opening setup file. File cannot be opened.	The setup file is corrupt and cannot be opened.	Use a valid file.	
Invalid data in the setup file. File may be corrupted.	The setup file contains invalid data or may be corrupt.	Use a valid file.	
Error loading data from the setup file. File cannot be loaded.	The data contained in the setup file is not usable.	Use a valid file.	
Error writing the setup file. File cannot be written.	The setup file is not writable. The setup file may be read only.	Check whether the file is being used by another program.	
		Check the file properties.	
Error opening the data file. File cannot be opened.	The data file is corrupt and cannot be opened.	Use a valid file.	
Error writing the data file. File cannot be written.	The data file is not writable. The data file may be read only.	Check whether the file is being used by another program.	
		■ Check the file properties.	
Error reading the data file. File cannot be read.	The data contained in the file is not usable.	Use a valid file.	
No waveform selected in the waveform list.	No waveform has been selected to save.	Select a waveform to save.	

Miscellaneous Error Messages 2

Error message Description		Possible solution
Invalid selection of waveforms. Only one waveform must be selected.	More than one waveform is selected to save.	Select only one waveform at a time to save.
Error opening the IQT file. File cannot be opened.	The .iqt file is corrupt and cannot be opened.	Use a valid file.
Error reading the IQT file. File cannot be read.	The .iqt file is corrupt and cannot be opened.	Use a valid file.
	The data contained in the .iqt file is not usable.	
Error opening the TIQ file. File cannot be opened.	The .tiq file is corrupt and cannot be opened.	Use a valid file.
Invalid data in the TIQ file. File may be corrupted.	The .tiq file contains invalid data or may be corrupt.	Use a valid file.
Error reading the TIQ file. File cannot be read.	The .tiq file is corrupt and cannot be opened.	Use a valid file.
	The data contained in the .tiq file is not usable.	
Selected waveforms have different length.	Spectrum calculation requires waveforms of same length.	Select I and Q format waveforms of same length from the waveform list.
Unable to retrieve the license information.	The option key string or the serial number is incorrect.	Enter the correct option key string or serial number.
Invalid option string. CRC error in option string.	Incorrect option key string.	Enter the correct option key string.
Invalid option string. Incorrect unique ID.	Mismatch of the option key string and the associated serial number.	Enter the correct option key string and associated serial number.
Invalid option string.	Incorrect option key string.	Enter the correct option key string.
Compilation aborted. Waveform length exceeds the instrument memory.	The combination of waveform length and oversampling is such that the number of samples to be generated exceeds the maximum memory.	Change either the waveform length or the oversampling value so that the product does not exceed the instrument memory.
Compilation aborted. Waveform length exceeds the generation limit.	The combination of waveform length and oversampling is such that the number of samples to be generated exceeds the maximum memory.	Change either the waveform length or the oversampling value so that the product does not exceed the instrument memory.
Maximum number of entries in multipath table:10	The maximum number of paths that you can define in 10.	Do not define more than ten paths.
The delay cannot be the same for different paths.	No two paths can have the same delay value.	Change the delay to a unique value.

Reference Shortcut Keys

Shortcut Keys

Menu/Menu item	Shortcut key	
File	Alt+F	
File> Open Setup	Ctrl+O	
File> Save Setup	Ctrl+S	
View	Alt+V	
Configure	Alt+C	
Waveform	Alt+A	
System	Alt+S	
Window	Alt+W	
Help	Alt+H	

RFXpress Options and AWG Models

Generic Signal

The following table lists the AWG models and options to generate generic signals using RFXpress.

Table 89: AWG models and options for generic signal generation

Instrument model	Direct RF	IF from AWG	IQ from AWG	Hardware signal addition
AWG7102	Yes	Yes	Yes	No
AWG7101	Yes	Yes	No	No
AWG7052	No	Yes	Yes	No
AWG7051	No	Yes	No	No
AWG5014	No	Yes	Yes	Yes
AWG5012	No	Yes	Yes	Yes
AWG5004	No	Yes	Yes	Yes
AWG5002	No	Yes	Yes	Yes

UWB-WiMedia

The following table lists the AWG models and options to generate UWB-WiMedia signals using RFXpress.

Reference AWG Specifications

Table 90: AWG models and options for UWB-WiMedia signal generation

Instrument model	Direct RF	IF from AWG	IQ from AWG	Calibra- tion	Remarks
AWG7102 – Opt 06	Yes, BandGroup1 and BandGroup2	Yes	Yes	Yes	Recommended option for Direct RF generation.
AWG7102 – Standard	No	Yes	Yes	Yes	Not recommended for Direct RF generation.
AWG7101– Standard	No	Yes	No	Yes	N/A
AWG7101- Opt 02	Yes, BandGroup1	Yes	No	Yes	Not recommended for Direct RF generation.
AWG7052	No	Yes	Yes	Yes	N/A
AWG7051	No	Yes	No	Yes	N/A
AWG5014	No	No	Yes	No	Only Non hopping IQ.
AWG5012	No	No	Yes	No	Only Non hopping IQ.
AWG5004	No	No	No	No	N/A
AWG5002	No	No	No	No	N/A

AWG Specifications

You can refer to the specifications in the Technical Reference for *AWG7000 Series Arbitrary Waveform Generators Specifications and Performance Verifications*, Tektronix part number 071-1853-XX.

You can view the document from Start > All Programs > Tektronix > AWG > Documentation > Technical Reference Manual.

Interleave

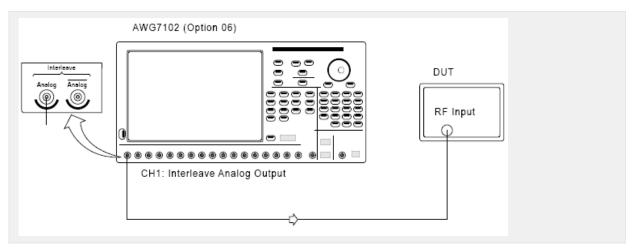
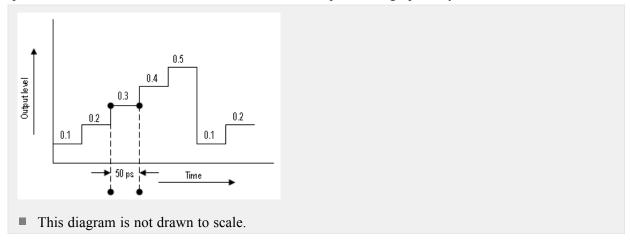

The AWG7102 Option 06 supports the interleaving mode. Interleaving is a mode where the sampling rate ranges from 10 GS/s to 20 GS/s. The following table shows the amplitude and sampling rates for the interleaving and non-interleaving modes.

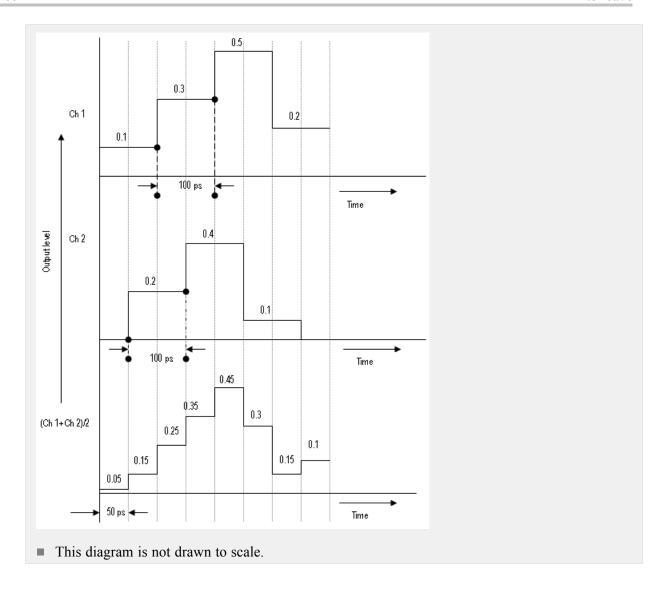
Table 91: Amplitude and sampling rates in non-Interleave and interleave modes


Non-Interleaving			Interleaving
Amplitude (min, max)	Sampling rate (min, max)	Amplitude (min, max)	Sampling rate (min, max)
500 mVpp, 1 Vpp	10 MS/s, 10 GS/s	500 mVpp, 1 Vpp	10 GS/s, 20 GS/s

In the Interleaving mode, the output is available in a separate interleave connector as shown in the figure.

Reference Interleave

As an example, in the non-interleave mode let the sampling rate be 20 GS/s and the original amplitude samples be 0.1, 0.2, 0.3, 0.4, 0.5, 0.1, 0.2. This can be represented graphically as shown here.



In the interleave mode, alternate samples are output from each channel. That is, the samples are distributed between the two channels as shown below:

Ch1	Ch2	
0.1	0.2	
0.3	0.4	
0.5	0.1	
0.2	0	

This can be represented graphically as shown here.

Reference Interleave

Zeroing

When Interleave is on, you can turn Zeroing on or off. This function is only available when Interleave is available. If you compose waveform data that is divided into two channels, the zeroing function allows you to select whether you want to handle each waveform as RZ (Return to Zero) or NRZ (Non Return to Zero).

If you turn the zeroing function on, the bandwidth increases. However, spurious characteristics will worsen (increase in the frequency spectra that should not be output) and the amplitude range will be halved.

PRBS Editor Starting Values

When the option **Use different PRBS at the beginning** is selected, the starting value for each PRBS varies. The following table gives the initial shift register values and the PRBS ploynomial expression:

Table 92: Initial shift values and PRBS polynomial expressions

PRBS	Initial PRBS	Polynomial for the Standard PRBS
PRBS 7	0 0 0 0 0 0 1	X7+X6+1=0
PRBS 9	00000001	X9+X5+1=0
PRBS 15	0000000000000001	X15 +x14+1=0
PRBS 16	00000000000000001	X16+X14+X13+X11+1=0
PRBS 20	0000000000000000000000000000	X20+X17+1=0
PRBS 21	000000000000000000000000000000000000000	X21+X19+1=0
PRBS 23	0000000000000000000	X23+X18+1=0

Amplifier Distortions

Nonlinear amplifier distortions (AM/AM and AM/PM) are calculated using the following simple equations:

$$Distortion_{MM/MM} = k3_{MM/MM} \times Magnitud \delta_{Norm} + k5_{MM/MM} \times Magnitud \delta_{Norm}$$

$$Distortion_{\mathit{AM/PM}} = k3_{\mathit{AM/PM}} \times Magnitud\hat{\mathcal{E}}_{\mathit{Norm}} + k5_{\mathit{AM/PM}} \times Magnitud\hat{\mathcal{E}}_{\mathit{Norm}}$$

Nonlinear Impairments

AM/AM

Nonlinear modulator AM/AM impairments are calculated using the following equations:

$$InphaseError_{Mag} = k2_{AMIAM} \times InphaseComp^2 + k3_{AMIAM} \times InphaseComp^3$$

$$Quadrature Error_{Mag} = k2_{AMIAM} \times Quadrature Comp^2 + k3_{AMIAM} \times Quadrature Comp^3$$

The inphase and quadrature distortions are applied to the signal as follows:

$$NewInphase = InphaseComp + InphaseError_{Max}$$

$$NewQuadrature = Quadrature Comp + Quadrature Error_{Max}$$

AM/PM

Nonlinear modulator AM/PM impairments are calculated using the following equations:

$$InphaseError_{Phasee} = k2_{AMIPM} \times InphaseComp^2 + k3_{AMIPM} \times InphaseComp^3$$

$$Quadrature Error_{Phase} = k 2_{AM/PM} \times Quadrature Comp^2 + k 3_{AM/PM} \times Quadrature Comp^3$$

The inphase and quadrature distortions are applied to the signal as follows:

$$NewInphase = InphaseComp \times cos(InphaseError_{Phase}) - QuadratureComp \times sin(QuadratureError_{Phase}) - QuadratureError_{Phase}) - QuadratureError$$

$$NewQuadrature = QuadratureComp \times cos(QuadratureError_{\textit{Phase}}) + InphaseComp \times sin(InphaseError_{\textit{Phase}}) + InphaseComp \times sin(InphaseError_{\textit{Phase}})$$

Index

A	E	Instruments,
About basic operations, 7 Advanced settings, AWG, 98 PSG, 101 Amplifier distortion, 119 Generic signal, 64 UWB-WiMedia, 88 Application, 12 select, 20	E Editing carrier details, 55 Error messages, Generic Signal, 109 Miscellaneous, 113 UWB-WiMedia, 111 Exiting the software, 11 Eye diagram, 109	Control, 98 Find, 26 Importing data, 24 Oscilloscope, 100 Interference addition, Gated noise, 92 Offset addition, 91 radar, 95 real-world signal, 95
AWG, 8 control, 98 interleave, 116 models, 115 specifications, 116	File name extensions and application directories, 11 File, data, 12 File(1)Samples, 37 File(2)Symbols, 38	Signal addition, 66 Sinusoidal interference, 94 WiFi (802.11a), 95 WiFi (MIMO), 95 WiMax, 95 Interleave, 116
C	menu, 12	M
Calibration, 42 IF/RF signals, 96 Compile Settings, 29	setup, 12 .smp, 11	Menu bar, 12 Minimum system requirements, 3 Multipath,
automatic, 30 Conformance mode, 68 hopping details, 73 packet details, 72 packet group details, 70 Conventions, 2 Custom mode, 69 MAC header, 84 packet group details, 74	Gated noise, 92 Graphs, 26 CCDF, 106 Constellation, 108 Eye diagram, 109 I(t),Q(t), 105 Pulse shape, 104	parameters for carriers, 65 parameters for UWB- WiMedia, 89 reference path, 65 N Non-linear impairments, 120
packet sync sequence, 79 PHY header, 83 PLCP header, 78 PLCP preamble, 77 PPDU details, 76 PSDU, 79	Spectrum, 107 I/Q Impairments, Carrier leakage, 85 Hardware skew, 64	On/Off, 21 Option, installation, 32 RFXpress and AWG
Data files, 12 .rfd, 11	I/Q Imbalance, 86 Non-linear distortion, 63 Quadrature error, 61 Importing data from a file or an oscilloscope, 22	models, 115 software, 3 Ordering options, 3 Overview, 33
Distortion addition, Amplifier distortion, 64	Installation Manual, 4 Installation, 4	Power ramping, 60 PRBS editor, 35

Process preferences, 48

R

Reference path, values, 89 Related documentation, 1 RFXpress Options and AWG models, 115 Run, 21

S

Setup, base data, 57 file, 12 filter, 58 IF signal generation, 5 IQ signal generation, 5 modulation, 57 multi carrier, 53 RF signal generation, 4 .rfs, 12 single carrier, 53 Shortcut keys, 115 Signal generation, 10 conformance mode, 68 custom mode, 69 Starting the software, 10

Status bar, 17 Symbol Map, 39

T

Toolbar, 16

W

Waveform list, 17 Welcome, 1

Z

Zoom, 104 I(t), Q(t), 105 Spectrum, 107